cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A036044 BCR(n): write in binary, complement, reverse.

Original entry on oeis.org

1, 0, 2, 0, 6, 2, 4, 0, 14, 6, 10, 2, 12, 4, 8, 0, 30, 14, 22, 6, 26, 10, 18, 2, 28, 12, 20, 4, 24, 8, 16, 0, 62, 30, 46, 14, 54, 22, 38, 6, 58, 26, 42, 10, 50, 18, 34, 2, 60, 28, 44, 12, 52, 20, 36, 4, 56, 24, 40, 8, 48, 16, 32, 0, 126, 62, 94, 30, 110, 46, 78, 14, 118, 54, 86
Offset: 0

Views

Author

Keywords

Comments

a(0) could be considered to be 0 if the binary representation of zero were chosen to be the empty string. - Jason Kimberley, Sep 19 2011
From Bernard Schott, Jun 15 2021: (Start)
Except for a(0) = 1, every term is even.
For each q >= 0, there is one and only one odd number h such that a(n) = 2*q iff n = h*2^m-1 for m >= 1 when q = 0, and for m >= 0 when q >= 1 (see A345401 and some examples below).
a(n) = 0 iff n = 2^m-1 for m >= 1 (Mersenne numbers) (A000225).
a(n) = 2 iff n = 3*2^m-1 for m >= 0 (A153893).
a(n) = 4 iff n = 7*2^m-1 for m >= 0 (A086224).
a(n) = 6 iff n = 5*2^m-1 for m >= 0 (A153894).
a(n) = 8 iff n = 15*2^m-1 for m >= 0 (A196305).
a(n) = 10 iff n = 11*2^m-1 for m >= 0 (A086225).
a(n) = 12 iff n = 13*2^m-1 for m >= 0 (A198274).
For k >= 1, a(n) = 2^k iff n = (2^(k+1)-1)*2^m - 1 for m >= 0.
Explanation for a(n) = 2:
For m >= 0, A153893(m) = 3*2^m-1 -> 1011...11 -> 0100...00 -> 10 -> 2 where 1011...11_2 is 10 followed by m 1's. (End)

Examples

			4 -> 100 -> 011 -> 110 -> 6.
		

Crossrefs

Cf. A035928 (fixed points), A195063, A195064, A195065, A195066.
Indices of terms 0, 2, 4, 6, 8, 10, 12, 14, 18, 22, 26, 30: A000225 \ {0}, A153893, A086224, A153894, A196305, A086225, A198274, A052996\{1,3}, A291557, A198276, A171389, A198275.

Programs

  • Haskell
    import Data.List (unfoldr)
    a036044 0 = 1
    a036044 n = foldl (\v d -> 2 * v + d) 0 (unfoldr bc n) where
       bc 0 = Nothing
       bc x = Just (1 - m, x') where (x',m) = divMod x 2
    -- Reinhard Zumkeller, Sep 16 2011
    
  • Magma
    A036044:=func; // Jason Kimberley, Sep 19 2011
    
  • Maple
    A036044 := proc(n)
        local bcr ;
        if n = 0 then
            return 1;
        end if;
        convert(n,base,2) ;
        bcr := [seq(1-i,i=%)] ;
        add(op(-k,bcr)*2^(k-1),k=1..nops(bcr)) ;
    end proc:
    seq(A036044(n),n=0..200) ; # R. J. Mathar, Nov 06 2017
  • Mathematica
    dtn[ L_ ] := Fold[ 2#1+#2&, 0, L ]; f[ n_ ] := dtn[ Reverse[ 1-IntegerDigits[ n, 2 ] ] ]; Table[ f[ n ], {n, 0, 100} ]
    Table[FromDigits[Reverse[IntegerDigits[n,2]/.{1->0,0->1}],2],{n,0,80}] (* Harvey P. Dale, Mar 08 2015 *)
  • PARI
    a(n)=fromdigits(Vecrev(apply(n->1-n,binary(n))),2) \\ Charles R Greathouse IV, Apr 22 2015
    
  • Python
    def comp(s): z, o = ord('0'), ord('1'); return s.translate({z:o, o:z})
    def BCR(n): return int(comp(bin(n)[2:])[::-1], 2)
    print([BCR(n) for n in range(75)]) # Michael S. Branicky, Jun 14 2021
    
  • Python
    def A036044(n): return -int((s:=bin(n)[-1:1:-1]),2)-1+2**len(s) # Chai Wah Wu, Feb 04 2022

Formula

a(2n) = 2*A059894(n), a(2n+1) = a(2n) - 2^floor(log_2(n)+1). - Ralf Stephan, Aug 21 2003
Conjecture: a(n) = (-1)^A023416(n)*b(n) for n > 0 with a(0) = 1 where b(2^m) = (-1)^m*(2^(m+1) - 2) for m >= 0, b(2n+1) = b(n) for n > 0, b(2n) = b(n) + b(n - 2^f(n)) + b(2n - 2^f(n)) for n > 0 and where f(n) = A007814(n) (see A329369). - Mikhail Kurkov, Dec 13 2024

A075300 Array A read by antidiagonals upwards: A(n, k) = array A054582(n,k) - 1 = 2^n*(2*k+1) - 1 with n,k >= 0.

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 7, 11, 9, 6, 15, 23, 19, 13, 8, 31, 47, 39, 27, 17, 10, 63, 95, 79, 55, 35, 21, 12, 127, 191, 159, 111, 71, 43, 25, 14, 255, 383, 319, 223, 143, 87, 51, 29, 16, 511, 767, 639, 447, 287, 175, 103, 59, 33, 18, 1023, 1535, 1279, 895, 575, 351, 207, 119
Offset: 0

Views

Author

Antti Karttunen, Sep 12 2002

Keywords

Comments

From Philippe Deléham, Feb 19 2014: (Start)
A(0,k) = 2*k = A005843(k),
A(1,k) = 4*k + 1 = A016813(k),
A(2,k) = 8*k + 3 = A017101(k),
A(n,0) = A000225(n),
A(n,1) = A153893(n),
A(n,2) = A153894(n),
A(n,3) = A086224(n),
A(n,4) = A052996(n+2),
A(n,5) = A086225(n),
A(n,6) = A198274(n),
A(n,7) = A238087(n),
A(n,8) = A198275(n),
A(n,9) = A198276(n),
A(n,10) = A171389(n). (End)
A permutation of the nonnegative integers. - Alzhekeyev Ascar M, Jun 05 2016
The values in array row n, when expressed in binary, have n trailing 1-bits. - Ruud H.G. van Tol, Mar 18 2025

Examples

			The array A begins:
   0    2    4    6    8   10   12   14   16   18 ...
   1    5    9   13   17   21   25   29   33   37 ...
   3   11   19   27   35   43   51   59   67   75 ...
   7   23   39   55   71   87  103  119  135  151 ...
  15   47   79  111  143  175  207  239  271  303 ...
  31   95  159  223  287  351  415  479  543  607 ...
  ... - _Philippe Deléham_, Feb 19 2014
From _Wolfdieter Lang_, Jan 31 2019: (Start)
The triangle T begins:
   n\k   0    1    2   3   4   5   6   7  8  9 10 ...
   0:    0
   1:    1    2
   2:    3    5    4
   3:    7   11    9   6
   4:   15   23   19  13   8
   5    31   47   39  27  17  10
   6:   63   95   79  55  35  21  12
   7:  127  191  159 111  71  43  25  14
   8:  255  383  319 223 143  87  51  29 16
   9:  511  767  639 447 287 175 103  59 33 18
  10: 1023 1535 1279 895 575 351 207 119 67 37 20
  ...
T(3, 1) = 2^2*(2*1+1) - 1 = 12 - 1 = 11.  (End)
		

Crossrefs

Inverse permutation: A075301. Transpose: A075302. The X-projection is given by A007814(n+1) and the Y-projection A025480.

Programs

  • Maple
    A075300bi := (x,y) -> (2^x * (2*y + 1))-1;
    A075300 := n -> A075300bi(A025581(n), A002262(n));
    A002262 := n -> n - binomial(floor((1/2)+sqrt(2*(1+n))),2);
    A025581 := n -> binomial(1+floor((1/2)+sqrt(2*(1+n))),2) - (n+1);
  • Mathematica
    Table[(2^# (2 k + 1)) - 1 &[m - k], {m, 0, 10}, {k, 0, m}] (* Michael De Vlieger, Jun 05 2016 *)

Formula

From Wolfdieter Lang, Jan 31 2019: (Start)
Array A(n, k) = 2^n*(2*k+1) - 1, for n >= 0 and m >= 0.
The triangle is T(n, k) = A(n-k, k) = 2^(n-k)*(2*k+1) - 1, n >= 0, k=0..n.
See also A054582 after subtracting 1. (End)
From Ruud H.G. van Tol, Mar 17 2025: (Start)
A(0, k) is even. For n > 0, A(n, k) is odd and (3 * A(n, k) + 1) / 2 = A(n-1, 3*k+1).
A(n, k) = 2^n - 1 (mod 2^(n+1)) (equivalent to the comment about trailing 1-bits). (End)

A365802 Numbers k such that A163511(k) is a fifth power.

Original entry on oeis.org

0, 16, 33, 67, 135, 271, 512, 543, 1025, 1056, 1087, 2051, 2113, 2144, 2175, 4103, 4227, 4289, 4320, 4351, 8207, 8455, 8579, 8641, 8672, 8703, 16384, 16415, 16911, 17159, 17283, 17345, 17376, 17407, 32769, 32800, 32831, 33792, 33823, 34319, 34567, 34691, 34753, 34784, 34815, 65539, 65601, 65632, 65663, 67585, 67616
Offset: 1

Views

Author

Antti Karttunen, Oct 01 2023

Keywords

Comments

Equivalently, numbers k for which A332214(k), and also A332817(k) are fifth powers.
The sequence is defined inductively as:
(a) it contains 0 and 16, and
(b) for any nonzero term a(n), (2*a(n)) + 1 and 32*a(n) are also included as terms.
When iterating n -> 2n+1 mod 31, starting from 16 we obtain five distinct remainders 16, 2, 5, 11, 23, before the cycle starts again from 16. (see A153893), while x^5 mod 31 may obtain only these values: 0, 1, 5, 6, 25, 26, 30. The only common element of these sets is 5. We have x^5 == 5 (mod 31) whenever x == 7, 14, 19, 25, 28 mod 31, with all other x leaving a remainder that is not in the set [16, 2, 5, 11, 23].
On the other hand, when iterating n -> 2n+1 mod 33, starting from 16 we obtain ten distinct remainders 16, 0, 1, 3, 7, 15, 31, 30, 28, 24, before the cycle starts again from 16, while x^5 mod 33 obtain only these values: 0, 1, 10, 11, 12, 21, 22, 23, 32. We have x^5 == 0 (mod 33) iff x == 0 (mod 33) and x^5 == 1 (mod 33) whenever x == 1, 4, 16, 25, 31 mod 33. In the n->2n+1 cycles of 5 and 10 elements starting from 16, the 5's (of every second cycle) in the former and the 1's in the latter are aligned with each other.
In any case, this sequence do not contain any fifth powers after the initial zero. See A365805. - Antti Karttunen, Nov 23 2023

Crossrefs

Positions of multiples of 5 in A365805.
Sequence A243071(n^5), n >= 1, sorted into ascending order.
Subsequences: A013825, A198275.

Programs

  • PARI
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    isA365802(n) = ispower(A163511(n),5);
    
  • PARI
    isA365802(n) = if(n<=16, !(n%16), if(n%2, isA365802((n-1)/2), if(n%32, 0, isA365802(n/32))));

A206371 a(n) = 31*2^n + 1.

Original entry on oeis.org

32, 63, 125, 249, 497, 993, 1985, 3969, 7937, 15873, 31745, 63489, 126977, 253953, 507905, 1015809, 2031617, 4063233, 8126465, 16252929, 32505857, 65011713, 130023425, 260046849, 520093697, 1040187393, 2080374785, 4160749569, 8321499137, 16642998273
Offset: 0

Views

Author

Brad Clardy, Feb 07 2012

Keywords

Crossrefs

Programs

  • Magma
    [31*2^n +1 : n in [0..35]];
    
  • Mathematica
    1+31*2^Range[0,50] (* G. C. Greubel, Jan 05 2023 *)
  • PARI
    a(n)=31<Charles R Greathouse IV, Jun 01 2015
    
  • SageMath
    [1+31*2^n for n in range(51)] # G. C. Greubel, Jan 05 2023

Formula

a(n) = 31*2^n + 1.
a(n) = A198275(n) + 2*A083686(n).
From G. C. Greubel, Jan 05 2023: (Start)
a(n) = 31*A000079(n) + 1.
a(n) = A257548(n) + 1, for n > 5.
G.f.: (32-33*x)/((1-x)*(1-2*x)).
E.g.f.: exp(x) + 31*exp(2*x). (End)
Showing 1-4 of 4 results.