cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A161630 E.g.f. satisfies: A(x) = exp( x/(1 - x*A(x)) ).

Original entry on oeis.org

1, 1, 3, 19, 181, 2321, 37501, 731935, 16758393, 440525377, 13077834841, 432796650551, 15799794395749, 630773263606513, 27339525297079269, 1278550150117141231, 64171287394646697841, 3440711053857464325377
Offset: 0

Views

Author

Paul D. Hanna, Jun 17 2009

Keywords

Examples

			E.g.f: A(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 181*x^4/4! + 2321*x^5/5! +...
log(A(x))/x = 1 + x*A(x) + x^2*A(x)^2 + x^3*A(x)^3 + x^4*A(x)^4 +...
		

Crossrefs

Cf. A161633 (e.g.f. = log(A(x))/x).

Programs

  • Mathematica
    Table[Sum[n! * (n-k+1)^(k-1)/k! * Binomial[n-1,n-k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jan 10 2014 *)
  • PARI
    {a(n,m=1)=if(n==0,1,sum(k=0,n,n!/k!*m*(n-k+m)^(k-1)*binomial(n-1,n-k)))}
    
  • PARI
    {a(n,m=1)=local(A=1+x+x*O(x^n));for(i=1,n,A=exp(x/(1-x*A)));n!*polcoeff(A^m,n)}

Formula

a(n) = Sum_{k=0..n} n! * (n-k+1)^(k-1)/k! * C(n-1,n-k).
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n!, then
a(n,m) = Sum_{k=0..n} n! * m*(n-k+m)^(k-1)/k! * C(n-1,n-k).
E.g.f. satisfies: A(x) = exp(x) * A(x)^(x*A(x)). - Paul D. Hanna, Aug 02 2013
a(n) ~ n^(n-1) * (1+2*c)^(n+1/2) / (sqrt(1+c) * 2^(2*n+2) * exp(n) * c^(2*n+3/2)), where c = LambertW(1/2) = 0.351733711249195826... (see A202356). - Vaclav Kotesovec, Jan 10 2014

A202322 Decimal expansion of x satisfying x+2=exp(-x).

Original entry on oeis.org

4, 4, 2, 8, 5, 4, 4, 0, 1, 0, 0, 2, 3, 8, 8, 5, 8, 3, 1, 4, 1, 3, 2, 7, 9, 9, 9, 9, 9, 9, 3, 3, 6, 8, 1, 9, 7, 1, 6, 2, 6, 2, 1, 2, 9, 3, 7, 3, 4, 7, 9, 6, 8, 4, 7, 1, 7, 7, 3, 3, 0, 7, 6, 9, 8, 2, 0, 1, 5, 9, 9, 2, 1, 4, 2, 0, 0, 4, 0, 7, 8, 4, 9, 0, 8, 6, 5, 9, 2, 4, 8, 1, 7, 8, 7, 3, 9, 5, 5
Offset: 0

Views

Author

Clark Kimberling, Dec 18 2011

Keywords

Comments

For many choices of u and v, there is just one value of x satisfying u*x+v=e^(-x). Guide to related sequences, with graphs included in Mathematica programs:
u.... v.... x
1.... 2.... A202322
1.... 3.... A202323
2.... 2.... A202353
2.... e.... A202354
1... -1.... A202355
1.... 0.... A030178
2.... 0.... A202356
e.... 0.... A202357
3.... 0.... A202392
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A202322, take f(x,u,v)=x+2-e^(-x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			x=-0.442854401002388583141327999999336819716262...
		

Crossrefs

Cf. A202320.

Programs

  • Mathematica
    (* Program 1:  A202322 *)
    u = 1; v = 2;
    f[x_] := u*x + v; g[x_] := E^-x
    Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.45, -.44}, WorkingPrecision -> 110]
    RealDigits[r]  (* A202322 *)
    (* Program 2: implicit surface of u*x+v=e^(-x) *)
    f[{x_, u_, v_}] := u*x + v - E^-x;
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 1, 2}]}, {v, 1, 3}, {u, 1, 3}];
    ListPlot3D[Flatten[t, 1]] (* for A202322 *)
    RealDigits[ ProductLog[E^2] - 2, 10, 99] // First (* Jean-François Alcover, Feb 14 2013 *)
  • PARI
    lambertw(exp(2)) - 2 \\ G. C. Greubel, Jun 10 2017

Formula

x(u,v) = W(e^(v/u)/u) - v/u, where W = ProductLog = LambertW. - Jean-François Alcover, Feb 14 2013
Equals A226571 - 2 = LambertW(exp(2))-2. - Vaclav Kotesovec, Jan 09 2014

Extensions

Digits from a(84) on corrected by Jean-François Alcover, Feb 14 2013

A126583 Decimal expansion of solution to exp(-x) = x^2.

Original entry on oeis.org

7, 0, 3, 4, 6, 7, 4, 2, 2, 4, 9, 8, 3, 9, 1, 6, 5, 2, 0, 4, 9, 8, 1, 8, 6, 0, 1, 8, 5, 9, 9, 0, 2, 1, 3, 0, 3, 4, 2, 9, 2, 8, 4, 3, 1, 0, 3, 4, 2, 2, 3, 6, 0, 8, 0, 9, 3, 2, 8, 7, 6, 9, 2, 2, 1, 9, 9, 2, 1, 2, 2, 1, 4, 4, 0, 6, 7, 7, 4, 2, 1, 7, 9, 3, 6, 6, 4, 6, 0, 7, 6, 6, 4, 3, 8, 3, 1, 3, 8, 5, 4, 7
Offset: 0

Views

Author

Denton J. Dailey (djd1497(AT)aol.com), Jan 05 2007

Keywords

Comments

The value of the infinite power tower function x^x^x... at x = sqrt(1/e). - Alois P. Heinz, Oct 19 2016

Examples

			0.7034674224983916520498186018599021303429284310342236...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ FindRoot[ Exp[ -x] == x^2, {x, {.5, 1}}, WorkingPrecision -> 120][[1, 2, 1]], 10, 111][[1]]
    RealDigits[ 2*ProductLog[1/2], 10, 102] // First (* Jean-François Alcover, Feb 27 2013 *)
  • PARI
    2*lambertw(1/2) \\ G. C. Greubel, Mar 06 2018

Formula

Equals 2*LambertW(1/2). - Alois P. Heinz, Oct 19 2016
Equals log(A099554) = 2*A202356. - Hugo Pfoertner, Jul 19 2024

A200319 E.g.f. satisfies: A(x) = x-1 + exp(A(x)^2).

Original entry on oeis.org

1, 2, 12, 132, 2040, 40440, 979440, 28034160, 925858080, 34654465440, 1449705660480, 67029745527360, 3394417068282240, 186842736763562880, 11107390768144070400, 709223357051739129600, 48408150749346010022400, 3517279496138031162739200, 271050342684747077612160000
Offset: 1

Views

Author

Paul D. Hanna, Nov 15 2011

Keywords

Examples

			E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 132*x^4/4! + 2040*x^5/5! +...
where A(1+x - exp(x^2)) = x and A(x) = x-1 + exp(A(x)^2).
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[1 - E^x^2 + x,{x,0,20}],x],x] * Range[0,20]!] (* Vaclav Kotesovec, Jan 10 2014 *)
  • PARI
    {a(n)=n!*polcoeff(serreverse(1+x-exp(x^2+x^2*O(x^n))),n)}
    for(n=1,25,print1(a(n),", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, (exp(x^2+x*O(x^n))-1)^m)/m!); n!*polcoeff(A, n)}
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, (exp(x^2+x*O(x^n))-1)^m/x)/m!)+x*O(x^n)); n!*polcoeff(A, n)}

Formula

E.g.f.: Series_Reversion(1+x - exp(x^2)).
E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) (exp(x^2)-1)^n / n!.
E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (exp(x^2)-1)^n/x / n! ).
a(n) ~ (c/2)^(1/4) * n^(n-1) / (sqrt(1+c) * exp(n) * (1+sqrt(c/2)-1/sqrt(2*c))^(n-1/2)), where c = LambertW(1/2) = 0.351733711249195826... (see A202356). - Vaclav Kotesovec, Jan 10 2014

A099554 Decimal expansion of the constant x that satisfies x = exp(1/sqrt(x)).

Original entry on oeis.org

2, 0, 2, 0, 7, 4, 7, 3, 5, 8, 6, 1, 1, 8, 5, 7, 6, 6, 8, 1, 1, 2, 6, 9, 5, 2, 8, 7, 2, 4, 7, 3, 2, 3, 6, 6, 4, 9, 9, 4, 3, 3, 1, 1, 3, 1, 4, 1, 6, 2, 5, 2, 9, 8, 9, 7, 3, 1, 7, 1, 1, 6, 0, 8, 2, 6, 9, 2, 8, 5, 7, 7, 0, 0, 8, 5, 3, 6, 0, 5, 7, 4, 4, 4, 0, 7, 9, 5, 0, 5, 7, 3, 5, 5, 2, 9, 6, 1, 1, 6, 9, 3, 5, 7, 0
Offset: 1

Views

Author

Paul D. Hanna, Oct 22 2004

Keywords

Comments

This constant arises from the series: S(n) = Sum_{k=0..2n} (n-[k/2])^k/k!. The asymptotic behavior of this series is given by: S(n) ~ c*x^n where c = (x+sqrt(x))/(1+2*sqrt(x)) = 0.8957126... and x = 2.0207473586... satisfies x = exp(1/sqrt(x)).

Examples

			x=2.02074735861185766811269528724732366499433113141625298973171160826928577...
To demonstrate how this constant describes the asymptotics of the sum:
S(n) = Sum_{k=0..2n} (n-[k/2])^k/k! ~ c*x^n
evaluate the sum at n=5:
S(5) = 1+ 5+ 4^2/2!+ 4^3/3!+ 3^4/4!+ 3^5/5!+ 2^6/6!+ 2^7/7!+ 1/8!+ 1/9!
= 782291/25920 = 30.1809799... = (0.89572199...)*x^5
and evaluate the sum at n=6:
S(6) = 1+ 6+ 5^2/2!+ 5^3/3!+ 4^4/4!+ 4^5/5!+ 3^6/6!+ 3^7/7!+ 2^8/8!+ 2^9/9!+ 1/10!+ 1/11!
= 608606683/9979200 = 60.9875223... = (0.89571298...)*x^6.
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x/.FindRoot[x==Exp[1/Sqrt[x]],{x,2},WorkingPrecision->120]][[1]] (* Harvey P. Dale, Jan 06 2013 *)
    RealDigits[ 1/(4*ProductLog[1/2]^2), 10, 105] // First (* Jean-François Alcover, Feb 15 2013 *)
  • PARI
    solve(x=2,2.1,x-exp(1/sqrt(x)))

Formula

Equals 1/(4*A202356^2). - Vaclav Kotesovec, Oct 06 2020

A143154 E.g.f.: A(x) = x + log(1 - A(x))^2.

Original entry on oeis.org

1, 2, 18, 262, 5320, 138728, 4419156, 166319424, 7221397848, 355312006392, 19537581248592, 1187337791554176, 79025863405440432, 5716937001401316000, 446654003380859659488, 37480492611898380241248
Offset: 1

Views

Author

Paul D. Hanna, Jul 27 2008

Keywords

Comments

Radius of convergence is r = (-1 + 6*A(r) - A(r)^2)/4 = 0.172815973872...
where A(r) = 1 - exp((A(r)-1)/2) = 0.2965325775...

Examples

			A(x) = x + 2*x^2/2! + 18*x^3/3! + 262*x^4/4! + 5320*x^5/5! + ...
-log(1 - A(x)) = G(x) = the g.f. of A143155:
G(x) = x + 3*x^2/2! + 26*x^3/3! + 376*x^4/4! + 7614*x^5/5! + ...
G(x)^2 = 2*x^2/2! + 18*x^3/3! + 262*x^4/4! + 5320*x^5/5! + ...
Related expansions:
A(x) = x + log(1-x)^2 + d/dx log(1-x)^4/2! + d^2/dx^2 log(1-x)^6/3! + d^3/dx^3 log(1-x)^8/4! + ...
log(A(x)/x) = log(1-x)^2/x + d/dx (log(1-x)^4/x)/2! + d^2/dx^2 (log(1-x)^6/x)/3! + d^3/dx^3 (log(1-x)^8/x)/4! + ...
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x-Log[1-x]^2,{x,0,20}],x],x] * Range[0,20]!] (* Vaclav Kotesovec, Jan 24 2014 *)
  • Maxima
    a(n):=((n-1)!*sum(binomial(n+k-1,n-1)*sum((-1)^(n+j-1)*binomial(k,j)*sum((binomial(j,l)*(2*(j-l))!*stirling1(n-l+j-1,2*(j-l)))/(n-l+j-1)!,l,0,j),j,0,k),k,0,n-1)); /* Vladimir Kruchinin, Feb 07 2012 */
  • PARI
    {a(n)=local(A=x+O(x^n));for(i=0,n,A=x + log(1-A)^2);n!*polcoeff(A,n)}
    
  • PARI
    {a(n)=n!*polcoeff(serreverse(x-log(1-x+x*O(x^n))^2),n)}
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, log(1-x+x*O(x^n))^(2*m)/m!)); n!*polcoeff(A, n)}
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, log(1-x+x*O(x^n))^(2*m)/x/m!)+x*O(x^n))); n!*polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))
    

Formula

E.g.f.: A(x) = Series_Reversion( x - log(1 - x)^2 ).
E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) log(1-x)^(2*n)/n!.
E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (log(1-x)^(2*n)/x)/n! ).
E.g.f. derivative: A'(x) = (1 - A(x))/(1 - A(x) + 2*log(1 - A(x))).
a(n) = ((n-1)!*sum(k=0..n-1, binomial(n+k-1,n-1)*sum(j=0..k, (-1)^(n+j-1)*binomial(k,j)*sum(l=0..j, (binomial(j,l)*(2*(j-l))!*stirling1(n-l+j-1,2*(j-l)))/(n-l+j-1)!)))), n>0. - Vladimir Kruchinin, Feb 07 2012
a(n) ~ c*sqrt(4/(1+c)-2-2*c) * n^(n-1) / (exp(n) * (1-c*(2+c))^n), where c = LambertW(1/2) = 0.35173371124919... (see A202356). - Vaclav Kotesovec, Jan 24 2014

A143155 E.g.f.: A(x) = -log(1 - x - A(x)^2).

Original entry on oeis.org

1, 3, 26, 376, 7614, 198248, 6309092, 237291388, 10297903920, 506495785632, 27842563031304, 1691646018671376, 112569103111005072, 8142200129607522288, 636046143210331062048, 53366672768969064921024
Offset: 1

Views

Author

Paul D. Hanna, Jul 27 2008

Keywords

Examples

			A(x) = x + 3*x^2/2! + 26*x^3/3! + 376*x^4/4! + 7614*x^5/5! +...
x + A(x)^2 = 1 - exp(-A(x)) = G(x) = g.f. of A143154:
G(x) = x + 2*x^2/2! + 18*x^3/3! + 262*x^4/4! + 5320*x^5/5! +...
A(x)^2 = 2*x^2/2! + 18*x^3/3! + 262*x^4/4! + 5320*x^5/5! +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(n+k-1)!*Sum[(-1)^(n+j-1)/(k-j)!*Sum[(StirlingS2[n-2*l+j-1,j-l])/(l!*(n-2*l+j-1)!),{l,0,Min[j,(n+j-1)/2]}],{j,0,k}],{k,0,n-1}],{n,1,20}] (* Vaclav Kotesovec after Vladimir Kruchinin, Dec 28 2013 *)
  • Maxima
    a(n):=(sum((n+k-1)!*sum((-1)^(n+j-1)/(k-j)!*sum((stirling2(n-2*l+j-1,j-l))/(l!*(n-2*l+j-1)!),l,0,min(j,(n+j-1)/2)),j,0,k),k,0,n-1)); /* Vladimir Kruchinin, Feb 03 2012 */
  • PARI
    {a(n)=local(A=x+O(x^n));for(i=0,n,A=-log(1-x-A^2));n!*polcoeff(A,n)}
    
  • PARI
    {a(n)=n!*polcoeff(-log(1-serreverse(x-log(1-x+x*O(x^n))^2)),n)}
    

Formula

a(n) = Sum_{k=0..n-1} (n+k-1)!*Sum_{j=0..k} ((-1)^(n+j-1)/(k-j)!)*Sum_{L=0..min(j, (n+j-1)/2)} Stirling2(n-2*L+j-1, j-l)/(L!*(n-2*L+j-1)!), n > 0. - Vladimir Kruchinin, Feb 03 2012
a(n) ~ n^(n-1) / (sqrt(2*(1+c)) * exp(n) * (1-2*c-c^2)^(n-1/2)), where c = LambertW(1/2). - Vaclav Kotesovec, Dec 28 2013
Showing 1-7 of 7 results.