cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A216704 a(n) = Product_{k=1..n} (64 - 8/k).

Original entry on oeis.org

1, 56, 3360, 206080, 12776960, 797282304, 49963024384, 3140532961280, 197853576560640, 12486759054049280, 789163172215914496, 49932506169297862656, 3162392057388864634880, 200447004252955727626240, 12714067126901763295150080, 806919460320698577132191744
Offset: 0

Views

Author

Michel Lagneau, Sep 16 2012

Keywords

Comments

This sequence is generalizable: Product_{k=1..n} (q^2 - q/k) = (q^n/n!) * Product_{k=0..n-1} (q*k + q-1) = expansion of (1- x*q^2)^((1-q)/q).

Crossrefs

Programs

  • Maple
    seq(product(64-8/k, k=1.. n), n=0..20);
    seq((8^n/n!)*product(8*k+7, k=0.. n-1), n=0..20);
  • Mathematica
    Table[Product[64-8/k,{k,n}],{n,0,20}] (* Harvey P. Dale, Sep 23 2017 *)

Formula

From Amiram Eldar, Aug 17 2025: (Start)
a(n) = 64^n * Gamma(n+7/8) / (Gamma(7/8) * Gamma(n+1)).
a(n) ~ c * 64^n / n^(1/8), where c = 1/Gamma(7/8) = 1/A203146 = 0.917723... . (End)

A025753 8th-order Patalan numbers (generalization of Catalan numbers).

Original entry on oeis.org

1, 1, 28, 1120, 51520, 2555392, 132880384, 7137574912, 392566620160, 21983730728960, 1248675905404928, 71742106565083136, 4161042180774821888, 243260927491451125760, 14317643160925409116160, 847604475126784219676672, 50432466270043661070761984, 3014081513550844685170245632
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(9 - (1 - 64*x)^(1/8))/8, {x, 0, 20}], x] (* Vincenzo Librandi, Dec 29 2012 *)
    a[n_] := 64^(n-1) * Pochhammer[7/8, n-1]/n!; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Aug 20 2025 *)

Formula

G.f.: (9-(1-64*x)^(1/9))/8.
a(n) = 8^(n-1)*7*A034975(n-1)/n!, n >= 2, where 7*A034975(n-1)= (8*n-9)!^8 = Product_{j=2..n} (8*j - 9). - Wolfdieter Lang
a(n) ~ 64^(n-1) / (Gamma(7/8) * n^(9/8)). - Amiram Eldar, Aug 20 2025

A242011 Decimal expansion of sum_{k>=0} (-1)^k*(log(4k+1)/(4k+1)+log(4k+3)/(4k+3)).

Original entry on oeis.org

0, 2, 3, 0, 0, 4, 5, 8, 7, 8, 6, 2, 7, 3, 6, 0, 1, 0, 3, 1, 7, 9, 9, 2, 6, 0, 2, 1, 4, 5, 1, 4, 6, 9, 6, 2, 3, 1, 8, 6, 6, 7, 6, 4, 1, 4, 7, 5, 0, 8, 8, 3, 2, 9, 0, 9, 6, 3, 8, 0, 0, 6, 2, 0, 6, 5, 8, 1, 4, 5, 4, 7, 6, 3, 5, 4, 5, 5, 9, 4, 1, 4, 0, 3, 1, 5, 6, 6, 2, 3, 6, 1, 5, 5, 8, 9, 1, 9, 6, 7
Offset: 0

Views

Author

Jean-François Alcover, Aug 11 2014

Keywords

Examples

			0.02300458786273601031799260214514696231866764147508832909638...
		

Crossrefs

Programs

  • Mathematica
    s = (Pi/(2*Sqrt[2]))*(Log[Gamma[1/8]*Gamma[3/8]/(Gamma[5/8]*Gamma[7/8])] - (EulerGamma + Log[2*Pi])); Join[{0}, RealDigits[s, 10, 99] // First]

Formula

(Pi/(2*sqrt(3)))*(log(Gamma(1/8)/Gamma(3/8)/(Gamma(5/8)/Gamma(7/8))) - (gamma + log(2*Pi))), where gamma is Euler's constant and Gamma(x) is the Euler Gamma function.

A203127 Decimal expansion of (3/8)! = Gamma(11/8).

Original entry on oeis.org

8, 8, 8, 9, 1, 3, 5, 6, 9, 1, 5, 6, 2, 2, 5, 3, 4, 0, 7, 4, 2, 4, 2, 7, 5, 6, 4, 0, 6, 6, 2, 4, 4, 6, 9, 1, 2, 0, 7, 7, 7, 5, 3, 0, 1, 2, 5, 9, 5, 9, 6, 8, 7, 0, 4, 1, 5, 6, 7, 2, 6, 0, 0, 5, 0, 2, 4, 3, 5, 5, 7, 4, 2, 5, 9, 2, 5, 0, 6, 7, 1, 9, 2, 4, 4, 9, 2, 8, 7, 5, 6, 3, 9, 1, 3, 0, 5, 5, 2
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			0.88891356915622534074242756406624469120777530125959687041567...
		

Crossrefs

Programs

Formula

Equals 3*A203143/8. - R. J. Mathar, Jan 15 2021
A203146 * this * A231863 * A011027 = A203130. - R. J. Mathar, Jan 15 2021
Equals Integral_{x=0..oo} exp(-x^(8/3)) dx. - Ilya Gutkovskiy, Apr 10 2024

A203132 Decimal expansion of (7/8)! = Gamma(15/8).

Original entry on oeis.org

9, 5, 3, 4, 4, 5, 8, 1, 2, 7, 4, 5, 0, 3, 4, 8, 3, 2, 3, 4, 5, 8, 2, 9, 6, 6, 0, 7, 1, 5, 0, 3, 1, 3, 4, 9, 7, 5, 4, 3, 8, 6, 3, 0, 9, 2, 9, 6, 6, 1, 9, 4, 8, 0, 4, 4, 9, 4, 9, 1, 0, 3, 7, 8, 4, 6, 9, 2, 3, 1, 1, 5, 2, 8, 2, 6, 4, 4, 5, 6, 5, 4, 3, 9, 6, 4, 0, 9, 6, 5, 4, 8, 1, 6, 6, 1, 2, 1, 4
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			0.95344581274503483234582966071503134975438630929661948044949...
		

Programs

Formula

Equals 7*A203146/8. - R. J. Mathar, Jan 15 2021
A203127 * this * A231863*2^(9/4) = (7/4)* A203130. - R. J. Mathar, Jan 15 2021
Equals Integral_{x=0..oo} exp(-x^(8/7)) dx. - Ilya Gutkovskiy, Apr 10 2024
Showing 1-5 of 5 results.