cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A203897 Nonprime numbers k >= 1 such that k and phi(k) contain only digits 0 and 1.

Original entry on oeis.org

1, 1111, 110111111, 1111011011, 11000111111, 110011011011, 110111101111, 111100011011, 111101010101, 111101111011, 1010011111111, 1010101001111, 1010101101101, 1010111100101, 1011111001111, 1100000111111, 1100110011011, 1111001011111, 1111001101111
Offset: 1

Views

Author

Michel Lagneau, Jan 07 2012

Keywords

Comments

From Robert Israel, Feb 26 2018: (Start)
Many terms are semiprimes of the form p*q where p = 11 or 101 and q is in A020449.
The first term after 1 that is not a semiprime is a(199) = 111100111111111111 = 11*101*100000100010001.
The first term after 1 that is not divisible by 11 or 101 is a(1023) = 1110010101001011111101 = 11111101 * 99901000000001. (End)

Examples

			a(3) = 110111111 = 11*10010101 is in the sequence because phi(110111111) = 100101000, which contains digits 0 and 1 only.
Remark: phi(11)=10, phi(10010101)=10010100, but 100101000 = 2*3*5*61*547.
		

Crossrefs

Programs

  • Maple
    with(numtheory): T:=array(1..23):k:=1:a:={0,1}:b:={1}:for a12 from 0 to 1 do: for a11 from 0 to 1 do: for a10 from 0 to 1 do: for a9 from 0 to 1 do: for a8 from 0 to 1 do: for a7 from 0 to 1 do: for a6 from 0 to 1 do: for a5 from 0 to 1 do: for a4 from 0 to 1 do: for a3 from 0 to 1 do: for a2 from 0 to 1 do: for a1 from 0 to 1 do: for a0 from 0 to 1 do:n:=a0+a1*10+a2*10^2+ a3*10^3+ a4*10^4+ a5*10^5+ a6*10^6+ a7*10^7+ a8*10^8+ a9*10^9 + a10*10^10+ a11*10^11+ a12*10^12: m:=phi(n):x:=convert(convert(m,base,10),set): if type(n,prime)=false and (a union x = a or  a union x = b) then T[k]:=n:k:=k+1:else fi:od: od: od: od: od: od: od: od: od:od:od:od:od: print(T):
    Res:= NULL: count:= 0:
    for q from 1 while count < 100 do
      L:= convert(q,base,2);
      n:=add(L[i]*10^(i-1),i=1..nops(L));
      if isprime(n) then next fi;
      r:= numtheory:-phi(n);
      if max(convert(r,base,10))=1 then
        Res:= Res, n;
        count:= count+1;
      fi
    od:
    Res; # Robert Israel, Feb 26 2018
  • Mathematica
    d = Table[FromDigits[IntegerDigits[n, 2]], {n, 10000}]; Select[d, ! PrimeQ[#] && Max[IntegerDigits[EulerPhi[#]]] == 1 &] (* T. D. Noe, Jan 11 2012 *)
    Rest[Select[FromDigits/@Tuples[{0,1},13],!PrimeQ[#]&&Max[IntegerDigits[ EulerPhi[ #]]] <2&]] (* Harvey P. Dale, Jan 17 2023 *)
  • PARI
    lista(nn) = {for (n=1, nn, x = fromdigits(binary(n), 10); if (! isprime(x) && (vecmax(digits(eulerphi(x))) < 2), print1(x, ", ")););} \\ Michel Marcus, Jun 12 2017

Extensions

Incorrect comments deleted by Robert Israel, Feb 26 2018
Definition edited by N. J. A. Sloane, Jan 17 2023 at the suggestion of Harvey P. Dale.

A209930 Numbers n such that largest digit of all divisors of n is 1.

Original entry on oeis.org

1, 11, 101, 1111, 10111, 101111, 1011001, 1100101, 10010101, 10011101, 10100011, 10101101, 10110011, 10111001, 11000111, 11100101, 11110111, 11111101, 100100111, 100111001, 101001001, 101001011, 101100011, 101101111, 101111011, 101111111, 110010101
Offset: 1

Views

Author

Jaroslav Krizek, Mar 20 2012

Keywords

Comments

Also numbers n such that largest digit of concatenation of all divisors (A037278) of n is 1.
What is the smallest n with a(n) <> A203304(n)? - Alois P. Heinz, Jul 16 2014

Examples

			Number  1111 is in sequence because largest digit of all divisors of 1111 (1, 11, 101, 1111) is 1.
		

Crossrefs

Cf. A209928 (largest digit of all divisors of n).
Cf. A203304.

Programs

  • Mathematica
    t = {}; n = 0; While[Length[t] < 30, n++; m = FromDigits[IntegerDigits[n, 2]]; If[Max[Union[Flatten[IntegerDigits[Divisors[m]]]]] <= 1, AppendTo[t, m]]]; t (* T. D. Noe, Jan 30 2013 *)

Extensions

Corrected by Jaroslav Krizek, Jan 29 2013
Showing 1-2 of 2 results.