cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A206351 a(n) = 7*a(n-1) - a(n-2) - 4 with a(1)=1, a(2)=3.

Original entry on oeis.org

1, 3, 16, 105, 715, 4896, 33553, 229971, 1576240, 10803705, 74049691, 507544128, 3478759201, 23843770275, 163427632720, 1120149658761, 7677619978603, 52623190191456, 360684711361585, 2472169789339635
Offset: 1

Views

Author

James R. Buddenhagen, Feb 06 2012

Keywords

Comments

A Pell sequence related to Heronian triangles (rational triangles), see A206334. The connection is this: consider the problem of finding triangles with area a positive integer n, and with sides (a, b, n) where a, b are rational. Note that n is both the area and one side. For many values of n this is not possible, and the sequence of such numbers n is quite erratic (see A206334). Nonetheless, each term in this sequence is such a value of n. For example, for n = 105 you can take the other two sides, a and b, to be 10817/104, and 233/104 and the area will equal n, i.e., 105.

Examples

			G.f. = x + 3*x^2 + 16*x^3 + 105*x^4 + 715*x^5 + 4896*x^6 + 33553*x^7 + ... - _Michael Somos_, Jun 26 2018
		

Crossrefs

Subsequence of A206334.

Programs

  • Haskell
    a206351 n = a206351_list !! (n-1)
    a206351_list = 1 : 3 : map (subtract 4)
                   (zipWith (-) (map (* 7) (tail a206351_list)) a206351_list)
    -- Reinhard Zumkeller, Feb 08 2012
    
  • Magma
    [Fibonacci(2*n)*Fibonacci(2*n-3): n in [1..30]]; // G. C. Greubel, Aug 12 2018
  • Maple
    genZ := proc(n)
    local start;
    option remember;
        start := [1, 3];
        if n < 3 then start[n]
        else 7*genZ(n - 1) - genZ(n - 2) - 4
        end if
    end proc:
    seq(genZ(n),n=1..20);
  • Mathematica
    LinearRecurrence[{8, -8, 1}, {1, 3, 16}, 50] (* Charles R Greathouse IV, Feb 07 2012 *)
    RecurrenceTable[{a[1] == 1, a[2] == 3, a[n] == 7 a[n - 1] - a[n - 2] - 4}, a, {n, 20}] (* Bruno Berselli, Feb 07 2012 *)
    a[ n_] := Fibonacci[2 n] Fibonacci[2 n - 3]; (* Michael Somos, Jun 26 2018 *)
    nxt[{a_,b_}]:={b,7b-a-4}; NestList[nxt,{1,3},20][[;;,1]] (* Harvey P. Dale, Aug 29 2024 *)
  • PARI
    Vec((1-5*x)/(1-8*x+8*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Feb 07 2012
    
  • PARI
    {a(n) = fibonacci(2*n) * fibonacci(2*n - 3)}; /* Michael Somos, Jun 26 2018 */
    

Formula

From Bruno Berselli, Feb 07 2012: (Start)
G.f.: x*(1-5*x)/(1-8*x+8*x^2-x^3).
a(n) = A081018(n-1) + 1. (End)
a(n) = -A003482(-n) = Fibonacci(2*n)*Fibonacci(2*n-3). - Michael Somos, Jun 26 2018
a(n) = A089508(n-1) + 2 for n>1. - Bruno Berselli, Jun 20 2019 [Formula found by Umberto Cerruti]
Product_{n>=2} (1 - 1/a(n)) = 1/phi (A094214) (Davlianidze, 2020). - Amiram Eldar, Nov 30 2021
a(n) = (Fibonacci(2*n-2) + 1/Lucas(2*n-2))*(Fibonacci(2*n-1) + 1/Lucas(2*n-1)). - Peter Bala, Sep 03 2022

A228914 Positive integers N such that 1/N = p/q - q/p + r/s - s/r for some positive integers p,q,r,s.

Original entry on oeis.org

4, 5, 9, 12, 15, 20, 21, 22, 24, 26, 29, 30, 31, 32, 34, 35, 36, 37, 38, 40, 43, 44, 53, 55, 56, 58, 59, 60, 62, 64, 66, 67, 68, 69, 70, 71, 74, 76, 77, 80, 82, 84, 86, 87, 88, 90, 91, 92, 94, 95, 102, 103, 104, 105, 106, 108, 109, 110, 112, 113, 115, 117, 122, 123, 129, 131, 132, 133, 135, 136, 137, 138, 139, 140, 141, 143, 144, 147
Offset: 1

Views

Author

Thomas Bokk, Sep 13 2013

Keywords

Comments

Positive integer N belongs to this sequence if and only if the elliptic curve y^2 = x^3 + (8*N^2+1)*x^2 + 16*N^4*x has positive rank.

Crossrefs

Programs

  • PARI
    { isA228914(n) = ellanalyticrank(ellinit([0, 8*n^2+1, 0, 16*n^4, 0]))[1]; } /* Max Alekseyev, Dec 30 2015 */

Extensions

More terms from Max Alekseyev, Sep 13 2013

A257642 Positive integers N such that there is a triangle with rational sides having area and perimeter both equal N.

Original entry on oeis.org

21, 24, 26, 27, 28, 30, 31, 33, 35, 36, 37, 39, 42, 43, 45, 47, 50, 51, 52, 55, 56, 58, 60, 61, 62, 63, 64, 66, 67, 71, 74, 75, 76, 77, 79, 81, 83, 85, 86, 88, 90, 91, 93, 94, 95, 96, 98, 99, 100, 102, 103, 105, 106, 107, 108, 109, 110, 112, 113, 115, 116, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 137, 138, 141, 143, 145, 147, 148, 149, 150
Offset: 1

Views

Author

Thomas Bokk, Nov 05 2015

Keywords

Comments

A positive integer N is in the sequence if and only if there exist positive rational numbers x,y such that x*y>1 and 4*x*y*(x+y)/(x*y-1)=N.
Except for N=27, a positive integer N is in this sequence if and only if N>20 and the elliptic curve w^2 = u^3 + N^2*(u+64)^2 has positive rank.

Crossrefs

Showing 1-3 of 3 results.