A206709 Number of primes of the form b^2 + 1 for b <= 10^n.
5, 19, 112, 841, 6656, 54110, 456362, 3954181, 34900213, 312357934, 2826683630, 25814570672, 237542444180, 2199894223892
Offset: 1
Examples
a(2) = 19 because there are 19 primes of the form b^2 + 1 for b less than 10^2: 2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101 and 8837.
References
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 264.
Links
- Soren Laing Aletheia-Zomlefer, Lenny Fukshansky, and Stephan Ramon Garcia, The Bateman-Horn Conjecture: Heuristics, History, and Applications, arXiv:1807.08899 [math.NT], 2018-2019. See Table 2. p. 8.
- Marek Wolf, Search for primes of the form m^2+1, arXiv:0803.1456 [math.NT], 2008-2010.
Programs
-
Maple
for n from 1 to 9 do : i:=0:for m from 1 to 10^n do:x:=m^2+1:if type(x,prime)=true then i:=i+1:else fi:od: printf ( "%d %d \n",n,i):od:
-
Mathematica
1 + Accumulate@ Array[Count[Range[10^(# - 1) + 1, 10^#], ?(PrimeQ[#^2 + 1] &)] &, 7] (* _Michael De Vlieger, Sep 18 2018 *)
-
PARI
a(n)=sum(n=1,10^n,ispseudoprime(n^2+1)) \\ Charles R Greathouse IV, Feb 13 2012
-
Python
from sympy import isprime def A206709(n): c, b, b2, n10 = 0, 1, 2, 10**n while b <= n10: if isprime(b2): c += 1 b += 1 b2 += 2*b - 1 return c # Chai Wah Wu, Sep 17 2018
Extensions
a(11)-a(12) from Arkadiusz Wesolowski, Jul 21 2012
a(13)-a(14) from Jinyuan Wang, Feb 24 2020
Comments