cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206776 a(n) = 3*a(n-1) + 2*a(n-2) for n>1, a(0)=2, a(1)=3.

Original entry on oeis.org

2, 3, 13, 45, 161, 573, 2041, 7269, 25889, 92205, 328393, 1169589, 4165553, 14835837, 52838617, 188187525, 670239809, 2387094477, 8501763049, 30279478101, 107841960401, 384084837405, 1367938433017, 4871984973861, 17351831787617, 61799465310573
Offset: 0

Views

Author

Bruno Berselli, Jan 10 2013

Keywords

Comments

This is the Lucas sequence V(3,-2).
Inverse binomial transform of this sequence is A072265.
a(n) = A124805(n) - 1 for n>0.

Examples

			G.f. = 2 + 3*x + 13*x^2 + 45*x^3 + 161*x^4 + 573*x^5 + 2041*x^6 + 7269*x^7 + ...
		

References

  • Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, 1994. Exercise 7.49(c), pages 379, 573.

Crossrefs

Cf. A189736 (same recurrence but with initial values reversed).

Programs

  • Magma
    [n le 1 select n+2 else 3*Self(n)+2*Self(n-1): n in [0..25]];
    
  • Maple
    A206776 := proc(n)
        option remember ;
        if n <= 1 then
            n+2 ;
        else
            3*procname(n-1)+2*procname(n-2) ;
        end if;
    end proc:
    seq(A206776(n),n=0..30) ; # R. J. Mathar, Feb 18 2024
  • Mathematica
    RecurrenceTable[{a[n] == 3 a[n - 1] + 2 a[n - 2], a[0] == 2, a[1] == 3}, a[n], {n, 25}]
    LinearRecurrence[{3,2},{2,3},30] (* Harvey P. Dale, Apr 29 2014 *)
    a[ n_] := If[ n < 0, (-2)^n a[ -n], ((3 + Sqrt[17])/2)^n + ((3 - Sqrt[17])/2)^n // Expand]; (* Michael Somos, Oct 13 2016 *)
    a[ n_] := If[ n < 0, (-2)^n a[ -n], Boole[n == 0] + SeriesCoefficient[ ((1 + 3*x + Sqrt[1 + 6*x + 17*x^2])/2)^n, {x, 0, n}]]; (* Michael Somos, Oct 13 2016 *)
  • Maxima
    a[0]:2$ a[1]:3$ a[n]:=3*a[n-1]+2*a[n-2]$ makelist(a[n], n, 0, 25);
    
  • PARI
    Vec((2-3*x)/(1-3*x-2*x^2) + O(x^30)) \\ Michel Marcus, Jun 26 2015
    
  • PARI
    {a(n) = 2 * real(( (3 + quadgen(68)) / 2 )^n)}; /* Michael Somos, Oct 13 2016 */
    
  • PARI
    {a(n) = my(w = quadgen(-8)); simplify(w^n * subst(2 * polchebyshev(n), x, -3/4*w))}; /* Michael Somos, Oct 13 2016 */
    
  • PARI
    for(n=0,25,print1(round(((3+sqrt(17))/2)^n+((3-sqrt(17))/2)^n),", ")) \\ Hugo Pfoertner, Nov 19 2018

Formula

G.f.: (2-3*x)/(1-3*x-2*x^2).
a(n) = ((3-sqrt(17))^n+(3+sqrt(17))^n)/2^n.
a(n) = [x^n] ( (1 + 3*x + sqrt(1 + 6*x + 17*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
a(n) = (-2)^n * a(-n) for all n in Z. - Michael Somos, Oct 13 2016
If c = (3 + sqrt(17))/2, then c^n = (a(n) + sqrt(17)*A007482(n-1)) / 2. - Michael Somos, Oct 13 2016
E.g.f.: 2*exp(3*x/2)*cosh(sqrt(17)*x/2). - Stefano Spezia, Oct 21 2022
a(n) = 2*A007482(n)-3*A007482(n-1). - R. J. Mathar, Feb 18 2024