cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A053530 Expansion of e.g.f.: exp(-x - x^2/2 + x*exp(x)).

Original entry on oeis.org

1, 0, 1, 3, 7, 35, 171, 847, 5041, 32643, 223705, 1659581, 13182159, 110802133, 984241363, 9212696235, 90477239521, 929604133343, 9969157068273, 111329454692485, 1291932988047775, 15550838026589061, 193833398512358011, 2498039016973836491
Offset: 0

Views

Author

N. J. A. Sloane, Jan 16 2000

Keywords

Comments

The number of simple labeled graphs on n nodes whose connected components are stars. - Geoffrey Critzer, Dec 10 2011
Equivalently, the number of minimal edge covers of the complete graph K_n. - Andrew Howroyd, Aug 04 2017

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.15(b).

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(-x -x^2/2 +x*Exp(x)) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
    
  • Mathematica
    nn = 30; a = x Exp[x]; Range[0, nn]! CoefficientList[Series[Exp[a - x^2/2! - x], {x, 0, nn}], x] (* Geoffrey Critzer, Dec 10 2011 *)
    CoefficientList[Series[Exp[-x - x^2/2 + x Exp[x]], {x, 0, 30}], x] Range[0, 30]! (* Eric W. Weisstein, Aug 10 2017 *)
    Table[n! Sum[1/k! (Binomial[k, n-k] 2^(k-n) (-1)^k + Sum[Binomial[k, j] Sum[j^(i-j)/(i-j)! Binomial[k-j, n-i-k+j] 2^(i-j+k-n) (-1)^(k-j), {i, j, n-k+j}], {j, k}]), {k, n}], {n, 30}] (* Eric W. Weisstein, Aug 10 2017 *)
  • Maxima
    a(n):=n!*sum((binomial(k,n-k)*2^(k-n)*(-1)^k +sum(binomial(k,j) *sum(j^(i-j)/(i-j)!*binomial(k-j,n-i-k+j)*(1/2)^(n-i-k+j)*(-1)^(k-j),i,j,n-k+j),j,1,k))/k!,k,1,n); /* Vladimir Kruchinin, Sep 10 2010 */
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(-x-1/2*x^2+x*exp(x)))) \\ Altug Alkan, Aug 10 2017
    
  • Sage
    m = 30; T = taylor(exp(-x -x^2/2 +x*exp(x)), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019

Formula

a(n) = n!*Sum_{k=1..n} (1/k!)*( binomial(k, n-k)*2^(k-n)*(-1)^k + Sum_{j=1..k} binomial(k,j)* (Sum_{i=j..n-k+j} (j^(i-j)/(i-j)! * binomial(k-j,n-i-k+j)*(1/2)^(n-i-k+j)*(-1)^(k-j)) ) ), n>0. - Vladimir Kruchinin, Sep 10 2010
From Vaclav Kotesovec, Aug 06 2014: (Start)
a(n) ~ n^n / (exp(r^2/2 + n*r/(1+r)) * r^n * sqrt(r^2*(1+r)/n + 2+r-1/(1+r))), where r is the root of the equation r*(exp(r)*(1+r)-1-r) = n.
(a(n)/n!)^(1/n) ~ exp(1/(2*LambertW(sqrt(n)/2)))/(2*LambertW(sqrt(n)/2)).
(End)

A210654 Triangle read by rows: T(n,k) (1 <= k <= n) = number of irreducible coverings by edges of the complete bipartite graph K_{n,k}.

Original entry on oeis.org

1, 1, 2, 1, 6, 15, 1, 14, 48, 184, 1, 30, 165, 680, 2945, 1, 62, 558, 2664, 13080, 63756, 1, 126, 1827, 11032, 59605, 320292, 1748803, 1, 254, 5820, 46904, 281440, 1663248, 9791824, 58746304, 1, 510, 18177, 200232, 1379745, 8906544, 56499849, 361679040, 2361347073
Offset: 1

Views

Author

N. J. A. Sloane, Mar 27 2012

Keywords

Examples

			Triangle begins:
  1;
  1,   2;
  1,   6,   15;
  1,  14,   48,   184;
  1,  30,  165,   680,   2945;
  1,  62,  558,  2664,  13080,   63756;
  1, 126, 1827, 11032,  59605,  320292, 1748803;
  1, 254, 5820, 46904, 281440, 1663248, 9791824, 58746304;
  ...
		

Crossrefs

Cf. A210655.

Programs

  • Maple
    T:= proc(p, q) option remember; `if`(p=1 or q=1, 1,
             add(binomial(q, r)   *T(p-1, q-r), r=2..q-1)
          +q*add(binomial(p-1, s) *T(p-s-1, q-1), s=0..p-2))
        end:
    seq(seq(T(n, k), k=1..n), n=1..12);  # Alois P. Heinz, Feb 10 2013
  • Mathematica
    T[p_, q_] := T[p, q] = If[p == 1 || q == 1, 1, Sum[Binomial[q, r]*T[p-1, q-r], {r, 2, q-1}] + q*Sum[Binomial[p-1, s]*T[p-s-1, q-1], {s, 0, p-2}]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Mar 19 2014, after Alois P. Heinz *)
  • PARI
    all(m) = {
    mat = matrix(m, m);
    for (i=1, m, for (j=1, m,
       if ((i == 1) || (j == 1), mat[i, j] = 1,
        if (i == j, mat[i, j] = i*mat[i-1,i-1] + sum(s=2,i-1, (s+1)*binomial(i,s)*mat[i-1,i-s]),
         mat[i, j] = sum(r=2, j-1, binomial(j,r)*mat[i-1,j-r]) + j*sum(s=0,i-2,binomial(i-1,s)*mat[i-s-1,j-1]));
       );
      );
    );
    for (i=1, m, for (j=1, i, print1(mat[i,j], ", ");); print(""););
    print("");
    for (i=1, m,print1(mat[i,i], ", "); );
    } \\ Michel Marcus, Feb 10 2013

Formula

E.g.f.: exp(x*exp(y)+y*exp(x)-x-y-x*y)-1. - Alois P. Heinz, Feb 10 2013

A290755 Number of minimal edge covers in the n-crown graph.

Original entry on oeis.org

1, 0, 1, 5, 49, 759, 16081, 435833, 14517441, 579937319, 27203499361, 1474723875789, 91200920752129, 6365087902895747, 496792437580978449, 43025414912824996889, 4106965602739453756801, 429531453143336097416367, 48964278165034713331278529, 6055596695306076807138311717, 809134978410285605488807023681
Offset: 0

Views

Author

Eric W. Weisstein, Aug 09 2017

Keywords

Crossrefs

Cf. A210655.

Programs

  • PARI
    \\ by inclusion-exclusion.
    B(n,k)={ my(xe=exp(x+O(x*x^n)), ye=exp(y+O(y*y^n))); n!^2*polcoef(polcoef((xe+ye-1)^k*exp(x*ye + y*xe - (x+y+x*y)),n),n)}
    a(n) = {sum(k=0, n, binomial(n,k)*B(n-k,k)*(-1)^k)} \\ Andrew Howroyd, May 29 2025

Extensions

a(6)-a(8) from Giovanni Resta, Aug 10 2017
a(1)-a(2) inserted by Eric W. Weisstein, Feb 14 2022
a(0)=1 prepended and a(9) onwards from Andrew Howroyd, May 29 2025
Showing 1-3 of 3 results.