cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A211422 Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w^2 + x*y = 0.

Original entry on oeis.org

1, 9, 17, 25, 41, 49, 57, 65, 81, 105, 113, 121, 137, 145, 153, 161, 193, 201, 225, 233, 249, 257, 265, 273, 289, 329, 337, 361, 377, 385, 393, 401, 433, 441, 449, 457, 505, 513, 521, 529, 545, 553, 561, 569, 585, 609, 617, 625, 657, 713, 753, 761
Offset: 0

Views

Author

Clark Kimberling, Apr 10 2012

Keywords

Comments

Suppose that S={-n,...,0,...,n} and that f(w,x,y,n) is a function, where w,x,y are in S. The number of ordered triples (w,x,y) satisfying f(w,x,y,n)=0, regarded as a function of n, is a sequence t of nonnegative integers. Sequences such as t/4 may also be integer sequences for all except certain initial values of n. In the following guide, such sequences are indicated in the related sequences column and may be included in the corresponding Mathematica programs.
...
sequence... f(w,x,y,n) ..... related sequences
A211415 ... w^2+x*y-1 ...... t+2, t/4, (t/4-1)/4
A211422 ... w^2+x*y ........ (t-1)/8, A120486
A211423 ... w^2+2x*y ....... (t-1)/4
A211424 ... w^2+3x*y ....... (t-1)/4
A211425 ... w^2+4x*y ....... (t-1)/4
A211426 ... 2w^2+x*y ....... (t-1)/4
A211427 ... 3w^2+x*y ....... (t-1)/4
A211428 ... 2w^2+3x*y ...... (t-1)/4
A211429 ... w^3+x*y ........ (t-1)/4
A211430 ... w^2+x+y ........ (t-1)/2
A211431 ... w^3+(x+y)^2 .... (t-1)/2
A211432 ... w^2-x^2-y^2 .... (t-1)/8
A003215 ... w+x+y .......... (t-1)/2, A045943
A202253 ... w+2x+3y ........ (t-1)/2, A143978
A211433 ... w+2x+4y ........ (t-1)/2
A211434 ... w+2x+5y ........ (t-1)/4
A211435 ... w+4x+5y ........ (t-1)/2
A211436 ... 2w+3x+4y ....... (t-1)/2
A211435 ... 2w+3x+5y ....... (t-1)/2
A211438 ... w+2x+2y ....... (t-1)/2, A118277
A001844 ... w+x+2y ......... (t-1)/4, A000217
A211439 ... w+3x+3y ........ (t-1)/2
A211440 ... 2w+3x+3y ....... (t-1)/2
A028896 ... w+x+y-1 ........ t/6, A000217
A211441 ... w+x+y-2 ........ t/3, A028387
A182074 ... w^2+x*y-n ...... t/4, A028387
A000384 ... w+x+y-n
A000217 ... w+x+y-2n
A211437 ... w*x*y-n ........ t/4, A007425
A211480 ... w+2x+3y-1
A211481 ... w+2x+3y-n
A211482 ... w*x+w*y+x*y-w*x*y
A211483 ... (n+w)^2-x-y
A182112 ... (n+w)^2-x-y-w
...
For the following sequences, S={1,...,n}, rather than
{-n,...,0,...n}. If f(w,x,y,n) is linear in w,x,y,n, then the sequence is a linear recurrence sequence.
A132188 ... w^2-x*y
A211506 ... w^2-x*y-n
A211507 ... w^2-x*y+n
A211508 ... w^2+x*y-n
A211509 ... w^2+x*y-2n
A211510 ... w^2-x*y+2n
A211511 ... w^2-2x*y ....... t/2
A211512 ... w^2-3x*y ....... t/2
A211513 ... 2w^2-x*y ....... t/2
A211514 ... 3w^2-x*y ....... t/2
A211515 ... w^3-x*y
A211516 ... w^2-x-y
A211517 ... w^3-(x+y)^2
A063468 ... w^2-x^2-y^2 .... t/2
A000217 ... w+x-y
A001399 ... w-2x-3y
A211519 ... w-2x+3y
A008810 ... w+2x-3y
A001399 ... w-2x-3y
A008642 ... w-2x-4y
A211520 ... w-2x+4y
A211521 ... w+2x-4y
A000115 ... w-2x-5y
A211522 ... w-2x+5y
A211523 ... w+2x-5y
A211524 ... w-3x-5y
A211533 ... w-3x+5y
A211523 ... w+3x-5y
A211535 ... w-4x-5y
A211536 ... w-4x+5y
A008812 ... w+4x-5y
A055998 ... w+x+y-2n
A074148 ... 2w+x+y-2n
A211538 ... 2w+2x+y-2n
A211539 ... 2w+2x-y-2n
A211540 ... 2w-3x-4y
A211541 ... 2w-3x+4y
A211542 ... 2w+3x-4y
A211543 ... 2w-3x-5y
A211544 ... 2w-3x+5y
A008812 ... 2w+3x-5y
A008805 ... w-2x-2y (repeated triangular numbers)
A001318 ... w-2x+2y
A000982 ... w+x-2y
A211534 ... w-3x-3y
A211546 ... w-3x+3y (triply repeated triangular numbers)
A211547 ... 2w-3x-3y (triply repeated squares)
A082667 ... 2w-3x+3y
A055998 ... w-x-y+2
A001399 ... w-2x-3y+1
A108579 ... w-2x-3y+n
...
Next, S={-n,...-1,1,...,n}, and the sequence counts the cases (w,x,y) satisfying the indicated inequality. If f(w,x,y,n) is linear in w,x,y,n, then the sequence is a linear recurrence sequence.
A211545 ... w+x+y>0; recurrence degree: 4
A211612 ... w+x+y>=0
A211613 ... w+x+y>1
A211614 ... w+x+y>2
A211615 ... |w+x+y|<=1
A211616 ... |w+x+y|<=2
A211617 ... 2w+x+y>0; recurrence degree: 5
A211618 ... 2w+x+y>1
A211619 ... 2w+x+y>2
A211620 ... |2w+x+y|<=1
A211621 ... w+2x+3y>0
A211622 ... w+2x+3y>1
A211623 ... |w+2x+3y|<=1
A211624 ... w+2x+2y>0; recurrence degree: 6
A211625 ... w+3x+3y>0; recurrence degree: 8
A211626 ... w+4x+4y>0; recurrence degree: 10
A211627 ... w+5x+5y>0; recurrence degree: 12
A211628 ... 3w+x+y>0; recurrence degree: 6
A211629 ... 4w+x+y>0; recurrence degree: 7
A211630 ... 5w+x+y>0; recurrence degree: 8
A211631 ... w^2>x^2+y^2; all terms divisible by 8
A211632 ... 2w^2>x^2+y^2; all terms divisible by 8
A211633 ... w^2>2x^2+2y^2; all terms divisible by 8
...
Next, S={1,...,n}, and the sequence counts the cases (w,x,y) satisfying the indicated relation.
A211634 ... w^2<=x^2+y^2
A211635 ... w^2A211790
A211636 ... w^2>=x^2+y^2
A211637 ... w^2>x^2+y^2
A211638 ... w^2+x^2+y^2
A211639 ... w^2+x^2+y^2<=n
A211640 ... w^2+x^2+y^2>n
A211641 ... w^2+x^2+y^2>=n
A211642 ... w^2+x^2+y^2<2n
A211643 ... w^2+x^2+y^2<=2n
A211644 ... w^2+x^2+y^2>2n
A211645 ... w^2+x^2+y^2>=2n
A211646 ... w^2+x^2+y^2<3n
A211647 ... w^2+x^2+y^2<=3n
A063691 ... w^2+x^2+y^2=n
A211649 ... w^2+x^2+y^2=2n
A211648 ... w^2+x^2+y^2=3n
A211650 ... w^3A211790
A211651 ... w^3>x^3+y^3; see Comments at A211790
A211652 ... w^4A211790
A211653 ... w^4>x^4+y^4; see Comments at A211790

Examples

			a(1) counts these 9 triples: (-1,-1,1), (-1, 1,-1), (0, -1, 0), (0, 0, -1), (0,0,0), (0,0,1), (0,1,0), (1,-1,1), (1,1,-1).
		

Crossrefs

Cf. A120486.

Programs

  • Mathematica
    t[n_] := t[n] = Flatten[Table[w^2 + x*y, {w, -n, n}, {x, -n, n}, {y, -n, n}]]
    c[n_] := Count[t[n], 0]
    t = Table[c[n], {n, 0, 70}] (* A211422 *)
    (t - 1)/8                   (* A120486 *)

A080838 Orchard crossing number of complete bipartite graph K_{1,n}.

Original entry on oeis.org

0, 0, 0, 2, 5, 12, 21, 36, 54, 80, 110, 150, 195, 252, 315, 392, 476, 576, 684, 810, 945, 1100, 1265, 1452, 1650, 1872, 2106, 2366, 2639, 2940, 3255, 3600, 3960, 4352, 4760, 5202, 5661, 6156, 6669, 7220, 7790, 8400, 9030, 9702, 10395, 11132, 11891
Offset: 1

Author

Ralf Stephan, Mar 28 2003

Keywords

Comments

Also the minimum number of transitive triples in a tournament on n nodes, i.e., a(n) = C(n,3) - A006918(n-2). - Leen Droogendijk, Nov 10 2014
a(n) = the number of binary strings of length n+1 with exactly one pair of adjacent 0's and exactly two pairs of adjacent 1's. - Jeremy Dover, Jul 07 2016

Crossrefs

Third column of A274228. - Jeremy Dover, Jul 07 2016
Essentially partial sums of A211539.

Programs

  • Magma
    [n/16*(2*n^2 - 8*n + 7 + (-1)^n): n in [1..50]]; // Vincenzo Librandi, May 17 2013
  • Mathematica
    CoefficientList[Series[(x^4 + 2 x^3) / (1 - x)^4 / (1 + x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, May 17 2013 *)
    Table[n/16*(2 n^2 - 8 n + 7 + (-1)^n), {n, 47}] (* Michael De Vlieger, Aug 01 2016 *)
  • PARI
    for(n=1,100,print1(if(n%2,n*(n-1)*(n-3)/8,n*(n-2)^2/8)","))
    

Formula

a(n) = (n/16) * (2*n^2 - 8*n + 7 + (-1)^n).
G.f.: (x^5 + 2*x^4) / (1-x)^4 / (1+x)^2.
For n odd, a(n) = A060423(n). - Gerald McGarvey, Sep 14 2008

A294285 Sum of the larger parts of the partitions of n into two distinct parts with larger part squarefree.

Original entry on oeis.org

0, 0, 2, 3, 3, 5, 11, 18, 18, 13, 23, 28, 28, 34, 48, 63, 63, 80, 80, 89, 89, 99, 121, 144, 144, 131, 157, 143, 143, 157, 187, 218, 218, 234, 268, 303, 303, 321, 359, 398, 398, 418, 460, 481, 481, 458, 504, 551, 551, 551, 551, 576, 576, 629, 629, 684, 684
Offset: 1

Author

Wesley Ivan Hurt, Oct 26 2017

Keywords

Comments

Sum of the lengths of the distinct rectangles with squarefree length and positive integer width such that L + W = n, W < L. For example, a(14) = 34; the rectangles are 1 X 13, 3 X 11, 4 X 10. The sum of the lengths is then 13 + 11 + 10 = 34. - Wesley Ivan Hurt, Nov 01 2017

Examples

			10 can be partitioned into two distinct parts as follows: (1, 9), (2, 8), (3, 7), (4, 6). The squarefree larger parts are 6 and 7, which sum to a(10) = 13. - _David A. Corneth_, Oct 27 2017
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(n - i)*MoebiusMu[n - i]^2, {i, Floor[(n-1)/2]}], {n, 60}]
    Table[Total[Select[IntegerPartitions[n,{2}],DuplicateFreeQ[#]&&SquareFreeQ[#[[1]]]&][[;;,1]]],{n,60}] (* Harvey P. Dale, Aug 30 2025 *)
  • PARI
    first(n) = {my(res = vector(n, i, binomial(i, 2) - binomial(i\2+1, 2)), nsqrfr = List()); forprime(i=2, sqrtint(n), for(k = 1, n \ i^2, listput(nsqrfr, k*i^2))); listsort(nsqrfr, 1); for(i=1, #nsqrfr, for(m = nsqrfr[i]+1, min(2*nsqrfr[i]-1, n), res[m]-=nsqrfr[i])); res} \\ David A. Corneth, Oct 27 2017
    
  • PARI
    a(n) = sum(i=1, (n-1)\2, (n-i)*moebius(n-i)^2); \\ Michel Marcus, Nov 08 2017

Formula

a(n) = Sum_{i=1..floor((n-1)/2)} (n - i) * mu(n - i)^2, where mu is the Möbius function (A008683).
a(n) = A211539(n + 1) - A294246(n). - David A. Corneth, Oct 27 2017

A338544 a(n) = (5*floor((n-1)/2)^2 + (4+(-1)^n)*floor((n-1)/2)) / 2.

Original entry on oeis.org

0, 0, 0, 4, 5, 13, 15, 27, 30, 46, 50, 70, 75, 99, 105, 133, 140, 172, 180, 216, 225, 265, 275, 319, 330, 378, 390, 442, 455, 511, 525, 585, 600, 664, 680, 748, 765, 837, 855, 931, 950, 1030, 1050, 1134, 1155, 1243, 1265, 1357, 1380, 1476, 1500, 1600, 1625, 1729, 1755, 1863
Offset: 0

Author

Wesley Ivan Hurt, Nov 01 2020

Keywords

Comments

Sum of the largest side lengths of all integer-sided triangles with perimeter 3n whose side lengths are in arithmetic progression (for example, when n=5 there are two triangles with perimeter 3*5 = 15 whose side lengths are in arithmetic progression: [3,5,7] and [4,5,6]; thus a(5) = 7+6 = 13).

Crossrefs

Programs

  • Mathematica
    Table[(5 Floor[(n - 1)/2]^2 + Floor[(n - 1)/2] (4 + (-1)^n))/2, {n, 0, 100}]

Formula

From Stefano Spezia, Nov 01 2020: (Start)
G.f.: x^3*(4 + x)/((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 4. (End)
16*a(n) = -14*n-1+10*n^2+(-1)^n-6*(-1)^n*n . - R. J. Mathar, Aug 19 2022
Showing 1-4 of 4 results.