cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A212002 Decimal expansion of (2*Pi)^2.

Original entry on oeis.org

3, 9, 4, 7, 8, 4, 1, 7, 6, 0, 4, 3, 5, 7, 4, 3, 4, 4, 7, 5, 3, 3, 7, 9, 6, 3, 9, 9, 9, 5, 0, 4, 6, 0, 4, 5, 4, 1, 2, 5, 4, 7, 9, 7, 6, 2, 8, 9, 6, 3, 1, 6, 2, 5, 0, 5, 6, 5, 3, 3, 9, 7, 5, 0, 4, 8, 8, 0, 1, 7, 9, 2, 8, 9, 6, 7, 6, 8, 2, 0, 9, 7, 2, 0, 0, 7
Offset: 2

Views

Author

Omar E. Pol, Aug 11 2012

Keywords

Comments

This constant appears in Kepler's 3rd Law, T^2 = (2*Pi)^2/GM*a^3 where a is the semi-major axis of a planet orbiting the Sun, T is its period, and GM is the standard gravitational parameter. - Raphie Frank, Dec 13 2012
García & Marco give a generalized zeta regularization by which this is the value of the product of the primes. - Charles R Greathouse IV, Jun 17 2013

Examples

			39.4784176043574344753379639995046045412547976289631...
		

Crossrefs

Programs

Formula

Equals Product_{k=1..10, gcd(k,10)==1} Gamma(k/10) = Gamma(1/10)*Gamma(3/10)*Gamma(7/10)*Gamma(9/10). - Amiram Eldar, Jun 12 2021
Equals lim_{n->oo} |B(2*n)/B(2*n+2)|*(2*n+1)*(2*n+2), where B(n) denotes the n-th Bernoulli number. - Peter Luschny, Dec 09 2021

A212004 Decimal expansion of (2*Pi)^4.

Original entry on oeis.org

1, 5, 5, 8, 5, 4, 5, 4, 5, 6, 5, 4, 4, 0, 3, 8, 9, 9, 5, 7, 8, 3, 0, 4, 5, 3, 2, 3, 0, 1, 9, 2, 8, 1, 7, 7, 9, 9, 9, 5, 6, 4, 1, 3, 7, 0, 7, 6, 2, 9, 6, 6, 7, 4, 7, 0, 6, 3, 4, 8, 5, 7, 5, 0, 2, 3, 9, 5, 3, 3, 6, 8, 7, 3, 0, 9, 2, 3, 5, 1, 3, 9, 0, 4, 1, 9
Offset: 4

Views

Author

Omar E. Pol, Aug 11 2012

Keywords

Examples

			1558.545456544038995783...
		

Crossrefs

Programs

Formula

Equals Product_{k=1..15, gcd(k,15)==1} Gamma(k/15). - Amiram Eldar, Jun 12 2021

A212005 Decimal expansion of (2*Pi)^5.

Original entry on oeis.org

9, 7, 9, 2, 6, 2, 9, 9, 1, 3, 1, 2, 9, 0, 0, 6, 5, 0, 4, 4, 0, 7, 7, 2, 1, 9, 2, 1, 3, 8, 9, 9, 3, 9, 4, 0, 7, 3, 6, 9, 6, 2, 2, 6, 1, 2, 0, 9, 8, 3, 9, 9, 6, 9, 7, 7, 1, 1, 7, 5, 8, 1, 9, 7, 9, 5, 9, 5, 1, 9, 7, 4, 8, 2, 7, 5, 6, 4, 8, 7, 8, 3, 5, 4, 5, 0, 7
Offset: 4

Views

Author

Omar E. Pol, Aug 11 2012

Keywords

Examples

			9792.629913129006504407721921389939407369622612098399...
		

Crossrefs

Programs

Formula

Equals Product_{k=1..22, gcd(k,22)==1} Gamma(k/22). - Amiram Eldar, Jun 12 2021

A195823 Decimal expansion of 8*Pi*5^(1/2).

Original entry on oeis.org

5, 6, 1, 9, 8, 5, 1, 7, 8, 4, 8, 3, 2, 5, 8, 1, 1, 1, 4, 5, 2, 5, 0, 9, 9, 7, 1, 4, 5, 6, 3, 9, 1, 5, 8, 3, 9, 5, 7, 3, 2, 0, 7, 3, 4, 9, 6, 5, 3, 7, 6, 1, 9, 3, 5, 9, 9, 1, 7, 7, 6, 8, 2, 0, 9, 5, 3, 7, 1, 3, 5, 0, 4, 4, 9, 5, 3, 5, 0, 5, 6, 4, 0, 8, 3, 3, 1
Offset: 2

Views

Author

Omar E. Pol, Feb 01 2012

Keywords

Comments

Equals 4*A212003/Product(Gamma(i/4), i=1..4). - Bruno Berselli, Jan 17 2013

Examples

			56.1985178483258111452509971456391583957320734965376193599177682...
		

Crossrefs

Cf. A000796.

Programs

Extensions

More terms from Bruno Berselli, Feb 04 2012

A357319 Decimal expansion of 6*Pi*Gamma(2/3)^2/(sqrt(3)*Gamma(1/3)^4).

Original entry on oeis.org

3, 8, 7, 4, 3, 8, 2, 3, 8, 7, 8, 4, 8, 8, 5, 4, 2, 0, 5, 6, 9, 5, 6, 4, 8, 8, 4, 7, 5, 4, 0, 1, 8, 9, 4, 8, 0, 4, 9, 6, 0, 3, 8, 8, 3, 3, 6, 3, 6, 8, 4, 8, 9, 0, 4, 3, 9, 4, 6, 4, 4, 5, 7, 5, 5, 8, 7, 6, 5, 4, 3, 9, 0, 4, 2, 8, 9, 6, 0, 6, 0, 3, 4, 0, 6, 6, 2, 8, 6, 1
Offset: 0

Views

Author

Stefano Spezia, Sep 23 2022

Keywords

Examples

			0.3874382387848854205695648847540189480496...
		

Crossrefs

Programs

  • Maple
    (8*Pi^3)/(sqrt(3)*GAMMA(1/3)^6): evalf(%, 92); # Peter Luschny, Sep 24 2022
  • Mathematica
    First[RealDigits[N[6*Pi*Gamma[2/3]^2/(Sqrt[3]*Gamma[1/3]^4), 90]]]
  • PARI
    6*Pi*gamma(2/3)^2/(sqrt(3)*gamma(1/3)^4) \\ Michel Marcus, Sep 24 2022

Formula

Equals 6*A000796*A073006^2/(A002194*A073005^4).
Equals (8*Pi^3)/(sqrt(3)*Gamma(1/3)^6) = A212003/(A002194*A073005^6). - Peter Luschny, Sep 24 2022
Showing 1-5 of 5 results.