A212002 Decimal expansion of (2*Pi)^2.
3, 9, 4, 7, 8, 4, 1, 7, 6, 0, 4, 3, 5, 7, 4, 3, 4, 4, 7, 5, 3, 3, 7, 9, 6, 3, 9, 9, 9, 5, 0, 4, 6, 0, 4, 5, 4, 1, 2, 5, 4, 7, 9, 7, 6, 2, 8, 9, 6, 3, 1, 6, 2, 5, 0, 5, 6, 5, 3, 3, 9, 7, 5, 0, 4, 8, 8, 0, 1, 7, 9, 2, 8, 9, 6, 7, 6, 8, 2, 0, 9, 7, 2, 0, 0, 7
Offset: 2
Examples
39.4784176043574344753379639995046045412547976289631...
Links
- J.-P. Allouche, The zeta-regularized product of odious numbers, arXiv:1906.10532 [math.NT], 2019.
- Hyperphysics, Kepler's Laws
- E. Muñoz García and R. Pérez Marco, The product over all primes is 4Pi^2, Communications in Mathematical Physics, Vol. 277, No. 1 (2008), pp. 69-81.
- Hengguang Li and Jeffrey S. Ovall, A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential, Discrete and Continuous Dynamical Systems Series B, Volume 20, Number 5, July 2015, pp. 1377-1391. Also doi:10.3934/dcdsb.2015.20.1377
- Wikipedia, Pendulum.
- Index entries for transcendental numbers
Programs
-
Mathematica
RealDigits[(2*Pi)^2,10,120][[1]] (* Harvey P. Dale, Mar 27 2019 *)
-
PARI
4*Pi^2 \\ Charles R Greathouse IV, Jun 17 2013
Formula
Equals Product_{k=1..10, gcd(k,10)==1} Gamma(k/10) = Gamma(1/10)*Gamma(3/10)*Gamma(7/10)*Gamma(9/10). - Amiram Eldar, Jun 12 2021
Equals lim_{n->oo} |B(2*n)/B(2*n+2)|*(2*n+1)*(2*n+2), where B(n) denotes the n-th Bernoulli number. - Peter Luschny, Dec 09 2021
Comments