cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A196737 Decimal expansion of (4*Pi^2)/sqrt(35) = A212002/A010490.

Original entry on oeis.org

6, 6, 7, 3, 0, 7, 0, 5, 2, 1, 6, 5, 4, 3, 7, 1, 2, 7, 2, 3, 9, 6, 0, 1, 6, 3, 9, 1, 3, 8, 8, 4, 1, 9, 9, 2, 4, 3, 7, 1, 6, 6, 8, 3, 0, 0, 6, 9, 1, 8, 5, 7, 2, 6, 4, 5, 7, 9, 2, 5, 6, 5, 1, 6, 5, 9, 0, 5, 4, 1, 2, 9, 2, 0, 2, 2, 8, 0, 2, 1, 5
Offset: 1

Views

Author

Raphie Frank, Dec 21 2012

Keywords

Comments

This sequence is exactly equal to (Pi*h)/Spin(5/2), where h = Planck's Constant = A003676 and Spin(n/2) = h/(4*Pi) * sqrt(n(n+2)) = A003676/(10*A019694) * sqrt(A005563(n)).

Examples

			6.673070521654371272396016391388419924371668300691857264579256516590541...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(4Pi^2)/Sqrt[35],10,120][[1]] (* Harvey P. Dale, Jan 26 2021 *)

A212003 Decimal expansion of (2*Pi)^3.

Original entry on oeis.org

2, 4, 8, 0, 5, 0, 2, 1, 3, 4, 4, 2, 3, 9, 8, 5, 6, 1, 4, 0, 3, 8, 1, 0, 5, 2, 0, 5, 3, 6, 8, 1, 1, 1, 6, 1, 6, 1, 7, 8, 0, 2, 3, 0, 8, 5, 2, 7, 0, 8, 0, 8, 6, 1, 5, 5, 3, 1, 5, 6, 3, 0, 4, 8, 3, 0, 4, 5, 1, 1, 5, 9, 3, 3, 9, 7, 2, 5, 6, 4, 8, 3, 0, 0, 5
Offset: 3

Views

Author

Omar E. Pol, Aug 11 2012

Keywords

Examples

			248.05021344239856140381052053681116161780230852708...
		

Crossrefs

Programs

Formula

Equals Product_{k=1..14, gcd(k,14)==1} Gamma(k/14). - Amiram Eldar, Jun 12 2021

A228746 Expansion of 8 * phi(q)^4 - 7 * phi(-q)^4 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 120, 24, 480, 24, 720, 96, 960, 24, 1560, 144, 1440, 96, 1680, 192, 2880, 24, 2160, 312, 2400, 144, 3840, 288, 2880, 96, 3720, 336, 4800, 192, 3600, 576, 3840, 24, 5760, 432, 5760, 312, 4560, 480, 6720, 144, 5040, 768, 5280, 288, 9360, 576, 5760, 96, 6840
Offset: 0

Views

Author

Michael Somos, Sep 02 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution with A005875 is A004008.

Examples

			G.f. = 1 + 120*q + 24*q^2 + 480*q^3 + 24*q^4 + 720*q^5 + 96*q^6 + 960*q^7 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(4), 2), 50); A[1] + 120*A[2]; /* Michael Somos, Aug 21 2014 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ (8 EllipticTheta[ 3, 0, q]^4 - 7 EllipticTheta[ 4, 0, q]^4), {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); polcoeff( 8 * A^4 - 7 * subst(A, x, -x)^4, n))};
    

Formula

a(n) = 120 * b(n) with b() multiplicative where b(2^e) = 1/5 if e>1, b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)), if p>2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 32 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A228745.
G.f.: 8 * (Sum_{k in Z} x^k^2)^4 - 7 * (Sum_{k in Z} (-x)^k^2)^4 .
a(2*n) = A004011(n). a(2*n + 1) = 120 * A008438(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 4*Pi^2 = 39.478417... (A212002). - Amiram Eldar, Dec 29 2023

A212004 Decimal expansion of (2*Pi)^4.

Original entry on oeis.org

1, 5, 5, 8, 5, 4, 5, 4, 5, 6, 5, 4, 4, 0, 3, 8, 9, 9, 5, 7, 8, 3, 0, 4, 5, 3, 2, 3, 0, 1, 9, 2, 8, 1, 7, 7, 9, 9, 9, 5, 6, 4, 1, 3, 7, 0, 7, 6, 2, 9, 6, 6, 7, 4, 7, 0, 6, 3, 4, 8, 5, 7, 5, 0, 2, 3, 9, 5, 3, 3, 6, 8, 7, 3, 0, 9, 2, 3, 5, 1, 3, 9, 0, 4, 1, 9
Offset: 4

Views

Author

Omar E. Pol, Aug 11 2012

Keywords

Examples

			1558.545456544038995783...
		

Crossrefs

Programs

Formula

Equals Product_{k=1..15, gcd(k,15)==1} Gamma(k/15). - Amiram Eldar, Jun 12 2021

A212005 Decimal expansion of (2*Pi)^5.

Original entry on oeis.org

9, 7, 9, 2, 6, 2, 9, 9, 1, 3, 1, 2, 9, 0, 0, 6, 5, 0, 4, 4, 0, 7, 7, 2, 1, 9, 2, 1, 3, 8, 9, 9, 3, 9, 4, 0, 7, 3, 6, 9, 6, 2, 2, 6, 1, 2, 0, 9, 8, 3, 9, 9, 6, 9, 7, 7, 1, 1, 7, 5, 8, 1, 9, 7, 9, 5, 9, 5, 1, 9, 7, 4, 8, 2, 7, 5, 6, 4, 8, 7, 8, 3, 5, 4, 5, 0, 7
Offset: 4

Views

Author

Omar E. Pol, Aug 11 2012

Keywords

Examples

			9792.629913129006504407721921389939407369622612098399...
		

Crossrefs

Programs

Formula

Equals Product_{k=1..22, gcd(k,22)==1} Gamma(k/22). - Amiram Eldar, Jun 12 2021

A212006 Decimal expansion of (2*Pi)^6.

Original entry on oeis.org

6, 1, 5, 2, 8, 9, 0, 8, 3, 8, 8, 8, 1, 9, 4, 8, 3, 9, 6, 9, 9, 3, 4, 0, 4, 4, 3, 9, 3, 7, 5, 4, 8, 7, 3, 5, 2, 7, 5, 0, 1, 9, 2, 1, 7, 9, 7, 1, 8, 6, 9, 8, 3, 4, 2, 0, 2, 2, 8, 8, 7, 5, 9, 9, 8, 9, 8, 2, 0, 1, 0, 4, 2, 1, 9, 1, 0, 4, 1, 3, 6, 6, 3, 9, 5, 0, 1, 7, 0, 1
Offset: 5

Views

Author

Omar E. Pol, Aug 11 2012

Keywords

Examples

			61528.908388819483969934...
		

Crossrefs

Programs

Formula

Equals Product_{k=1..21, gcd(k,21)==1} Gamma(k/21). - Amiram Eldar, Jun 12 2021

A233700 Decimal expansion of 1/sin(arctan(1/t)) or t/sin(arctan(t)) where t = 2*Pi: hypotenuse for a right triangle of equal area to a disk.

Original entry on oeis.org

6, 3, 6, 2, 2, 6, 5, 1, 3, 1, 5, 6, 7, 3, 2, 8, 3, 9, 3, 6, 9, 1, 2, 4, 5, 4, 4, 0, 5, 8, 6, 8, 0, 4, 4, 1, 0, 6, 9, 9, 7, 1, 4, 9, 8, 5, 1, 3, 8, 9, 8, 9, 6, 8, 6, 5, 8, 2, 0, 4, 1, 6, 1, 7, 0, 4, 5, 9, 9, 8, 5, 8, 7, 3, 3, 1, 7, 8, 4, 8, 5, 4, 1, 3, 4, 5, 5, 0, 8, 7, 7, 1, 3
Offset: 1

Views

Author

John W. Nicholson, Dec 16 2013

Keywords

Comments

"The great mathematician Archimedes used the tools of Euclidean geometry to show that the area inside a circle is equal to that of a right triangle whose base has the length of the circle's circumference and whose height equals the circle's radius in his book Measurement of a Circle." (Quote from Wikipedia link)

Examples

			6.362265131567328393691245440586804410699714985138989686582041617045998587331...
		

Crossrefs

Programs

  • Julia
    using Nemo
    RR = RealField(310)
    t = const_pi(RR) + const_pi(RR)
    t/sin(atan(t)) |> println # Peter Luschny, Mar 13 2018
  • Magma
    C := ComplexField(); Sqrt(1 + 4*Pi(C)^2) // G. C. Greubel, Jan 08 2018
    
  • Magma
    R:=RealField(110); SetDefaultRealField(R); n:=Sqrt(1+4*Pi(R)^2); Reverse(Intseq(Floor(10^108*n))); // Bruno Berselli, Mar 13 2018
    
  • Mathematica
    RealDigits[(2*Pi)/Sin[ArcTan[2*Pi]],10,120][[1]] (* Harvey P. Dale, Jul 12 2014 *)
    RealDigits[ Sqrt[1 + 4*Pi^2], 10, 111][[1]] (* Robert G. Wilson v, Mar 12 2015 *)
  • PARI
    sqrt(1+(2*Pi)^2)
    

Formula

Equals sqrt(1+(2*Pi)^2) = sqrt(1 + (A019692)^2) = sqrt(1 + A212002) = 1/sin(A233527) = A019692/sin(A233528) = 1/cos(A233528) = A019692/cos(A233527).

A275322 Decimal expansion of AGM(1, sqrt(2))^2/Pi.

Original entry on oeis.org

4, 5, 6, 9, 4, 6, 5, 8, 1, 0, 4, 4, 4, 6, 3, 6, 2, 5, 3, 7, 4, 9, 6, 6, 6, 2, 2, 5, 4, 7, 6, 8, 3, 3, 3, 6, 6, 1, 1, 7, 6, 7, 7, 3, 0, 0, 1, 4, 8, 3, 1, 5, 0, 8, 3, 9, 4, 3, 6, 2, 2, 4, 7, 2, 6, 7, 4, 8, 4, 3, 5, 8, 0, 7, 0, 8, 0, 5, 3, 8, 5, 5
Offset: 0

Author

Dimitris Valianatos, Jul 23 2016

Keywords

Comments

Conjecture: Equals Product_{n odd} (n/(n+2) if n == 1 (mod 4), (n+2)/n otherwise) = (1/3) * (5/3) * (5/7) * (9/7) * (9/11) * (13/11) * (13/15) * (17/15) * (17/19) * (21/19) * (21/23) * (25/23) * (25/27) * ...

Examples

			0.45694658104446362537496662254768...
		

Crossrefs

Cf. A053004 (AGM(1, sqrt(2))).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); 8*Pi(R)^2/Gamma(1/4)^4; // G. C. Greubel, Oct 07 2018
  • Maple
    evalf(GaussAGM(1,sqrt(2))^2/Pi,100); # Muniru A Asiru, Oct 08 2018
  • Mathematica
    First@ RealDigits@ N[ArithmeticGeometricMean[1, Sqrt[2]]^2/Pi, 120] (* Michael De Vlieger, Jul 26 2016 *)
  • PARI
    agm(1, sqrt(2)) ^ 2 / Pi
    
  • PARI
    8*Pi^2/gamma(1/4)^4 \\ Altug Alkan, Oct 08 2018
    

Formula

Equals 8*Pi^2/Gamma(1/4)^4 = 4*Gamma(3/4)^2/Gamma(1/4)^2. - Vaclav Kotesovec, Sep 22 2016

A212007 Decimal expansion of (2*Pi)^7.

Original entry on oeis.org

3, 8, 6, 5, 9, 7, 5, 3, 3, 1, 5, 5, 4, 2, 9, 3, 8, 4, 6, 4, 1, 8, 1, 8, 4, 3, 1, 1, 1, 3, 2, 2, 1, 3, 5, 4, 4, 8, 5, 4, 3, 1, 3, 5, 6, 8, 3, 7, 8, 1, 1, 4, 8, 9, 6, 3, 2, 5, 4, 2, 0, 1, 5, 0, 2, 5, 0, 4, 1, 2, 3, 7, 4, 1, 3, 5, 8, 2, 3, 2, 0, 7, 6, 0, 1, 2, 1
Offset: 6

Author

Omar E. Pol, Aug 13 2012

Keywords

Examples

			386597.533155429384641818431113221354485431356837811...
		

Crossrefs

Programs

A377594 Decimal expansion of 1/4 - 7*zeta(3)/(4*Pi^2).

Original entry on oeis.org

0, 3, 6, 8, 6, 0, 8, 0, 0, 5, 9, 1, 2, 4, 7, 1, 0, 4, 5, 3, 8, 2, 3, 9, 2, 8, 6, 7, 0, 1, 9, 1, 6, 5, 6, 3, 4, 7, 0, 9, 9, 6, 6, 1, 5, 1, 8, 5, 1, 8, 2, 4, 4, 6, 2, 2, 9, 1, 9, 6, 7, 7, 0, 9, 8, 6, 7, 3, 5, 2, 7, 4, 3, 8, 5, 4, 4, 1, 7, 0, 9, 2, 5, 5, 4, 3, 7, 9, 0, 5, 8, 3, 3, 8, 7, 8, 5, 2, 8, 2, 0
Offset: 0

Author

Stefano Spezia, Nov 02 2024

Keywords

Examples

			0.036860800591247104538239286701916563470996615185...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, p. 44.

Crossrefs

Programs

  • Mathematica
    RealDigits[1/4-7Zeta[3]/(4Pi^2),10,100][[1]]

Formula

Equals Sum_{k>=1} zeta(2*k)/((2*k + 1)*(2*k + 2)*2^(2*k)) [Euler] (see Finch and Shamos).
Showing 1-10 of 12 results. Next