cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A125135 Triangle read by rows in which row n lists prime factors of p^p - 1 where p = prime(n).

Original entry on oeis.org

3, 2, 13, 2, 2, 11, 71, 2, 3, 29, 4733, 2, 5, 15797, 1806113, 2, 2, 3, 53, 264031, 1803647, 2, 2, 2, 2, 10949, 1749233, 2699538733, 2, 3, 3, 109912203092239643840221, 2, 11, 461, 1289, 831603031789, 1920647391913
Offset: 1

Views

Author

N. J. A. Sloane, Jan 21 2007

Keywords

Examples

			Triangle begins:
3;
2, 13;
2, 2, 11, 71;
2, 3, 29, 4733;
2, 5, 15797, 1806113;
2, 2, 3, 53, 264031, 1803647;
2, 2, 2, 2, 10949, 1749233, 2699538733;
2, 3, 3, 109912203092239643840221;
2, 11, 461, 1289, 831603031789, 1920647391913;
2, 2, 7, 59, 16763, 84449, 2428577, 14111459, 58320973, 549334763;
...
n=4: p=7, 7^7-1 = 823542 = 2*3*29*4733 gives row 4.
		

Crossrefs

Programs

  • Magma
    for p in [ n : n in [1..100] | IsPrime(n) ] do "\nDoing p =", p; n := p^p -1; Factorisation(n); end for; // John Cannon
  • Maple
    T:= n-> (p-> sort(map(i-> i[1]$i[2], ifactors(p^p-1)[2]))[])(ithprime(n)):
    seq(T(n), n=1..10);  # Alois P. Heinz, May 20 2022

A214812 Largest prime factor of (p^p-1)/(p-1) where p = prime(n).

Original entry on oeis.org

3, 13, 71, 4733, 1806113, 1803647, 2699538733, 109912203092239643840221, 1920647391913, 549334763, 568972471024107865287021434301977158534824481, 41903425553544839998158239, 5926187589691497537793497756719, 19825223972382274003506149120708429799166030881820329892377241, 194707033016099228267068299180244011637
Offset: 1

Views

Author

N. J. A. Sloane, Jul 31 2012

Keywords

Crossrefs

Programs

  • Mathematica
    FactorInteger[#][[-1,1]]&/@Table[(p^p-1)/(p-1),{p,Prime[Range[15]]}] (* Harvey P. Dale, Aug 27 2016 *)
  • PARI
    a(n) = my(p=prime(n)); vecmax(factor((p^p-1)/(p-1))[,1]); \\ Daniel Suteu, May 26 2022

Formula

a(n) = A006530(A001039(n)). - Daniel Suteu, May 26 2022

A329065 Smallest m_0 such that A118106(m_0) = n; smallest m_0 such that if we write m_0 = Product_{i=1..t} p_i^e_i, then lcm_{1<=i,j<=t, i!=j} ord(p_i,p_j^e_j) = n, where ord(a,r) is the multiplicative order of a modulo r.

Original entry on oeis.org

1, 6, 14, 10, 55, 18, 203, 34, 146, 22, 46, 26, 689, 86, 302, 51, 5759, 38, 955, 50, 98, 69, 94, 288, 505, 5462, 327, 58, 466, 77, 9305, 384, 5447, 309, 142, 74, 446, 2933, 158, 246, 3403, 129, 862, 115, 543, 141, 4702, 119, 5713, 453, 206, 106, 5671, 162, 605, 928, 687, 118
Offset: 1

Views

Author

Jianing Song, Nov 03 2019

Keywords

Comments

For n != 1, 6, a(n) <= 2*A112927(n): suppose n != 1, 6, by Zsigmondy's theorem, 2^n - 1 has at least one primitive factor p. Here a primitive factor p means that ord(2,p) = n, where ord(a,r) is the multiplicative order of a modulo r. So we have A118106(2p) = lcm(ord(p,2),ord(2,p)) = lcm(1,n) = n. Specially, we have A118106(2*A112927(n)) = n for n != 1, 6.
There is another way to construct m such that A118106(m) = n > 1 (and usually this way generates smaller m's than the way above): let q be any prime factor of n, again, by Zsigmondy's theorem, q^n - 1 has at least one primitive factor p unless (n,q) = (6,2). Note that q^(p-1) == 1 (mod p), so q^gcd(p-1,n) == 1 (mod p). But n is the smallest positive number such that q^n == 1 (mod p), so gcd(p-1,n) = n. So we have A118106(pq) = lcm(ord(p,q),ord(q,p)) = lcm(1,n) = n. For example, if n = 5, then q = 5, p = 11, m = 55 (the way above gives A118106(62) = 5); if n = 7, then q = 7, p = 29, m = 203 (the way above gives A118106(254) = 7); if n = 13, then q = 13, p = 53, m = 689 (the way above gives A118106(16382) = 13). This gives a(q) <= q*A212552(q) for primes q.

Examples

			A118106(203) = 7; for any m < 203, A118106(m) is not equal to 7, so a(7) = 203.
		

Crossrefs

Programs

  • PARI
    a(n) = for(k=1, oo, if(A118106(k)==n, return(k))) \\ See A118106 for its program

A354226 a(n) is the number of distinct prime factors of (p^p - 1)/(p - 1) where p = prime(n).

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 3, 1, 4, 7, 1, 7, 5, 3, 3, 5, 3, 4, 6, 4, 10, 5, 4, 6, 6, 9, 5, 4, 5, 8, 6, 4, 11
Offset: 1

Views

Author

Luis H. Gallardo, May 20 2022

Keywords

Comments

a(34) > 3, and depends on the full factorization of the 296-digit composite number (139^139 - 1)/138. - Tyler Busby, Jan 22 2023
Sequence continues as ?, 8, ?, 5, 8, 4, 5, ?, 8, ?, 8, 7, 6, 3, 3, ..., where ? represents uncertain terms. - Tyler Busby, Jan 22 2023

Examples

			a(3)=2, since (5^5 - 1)/(5 - 1) = 11*71.
		

Crossrefs

Programs

  • PARI
    a(n) = my(p=prime(n)); omega((p^p-1)/(p-1)); \\ Michel Marcus, May 22 2022
    
  • Python
    from sympy import factorint, prime
    def a(n): p = prime(n); return len(factorint((p**p-1)//(p-1)))
    print([a(n) for n in range(1, 12)]) # Michael S. Branicky, May 23 2022

Formula

a(n) = A001221(A001039(n)).

Extensions

a(18)-a(33) from Amiram Eldar, May 20 2022
Showing 1-4 of 4 results.