cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A212959 Number of (w,x,y) such that w,x,y are all in {0,...,n} and |w-x| = |x-y|.

Original entry on oeis.org

1, 4, 11, 20, 33, 48, 67, 88, 113, 140, 171, 204, 241, 280, 323, 368, 417, 468, 523, 580, 641, 704, 771, 840, 913, 988, 1067, 1148, 1233, 1320, 1411, 1504, 1601, 1700, 1803, 1908, 2017, 2128, 2243, 2360, 2481, 2604, 2731, 2860, 2993, 3128, 3267
Offset: 0

Views

Author

Clark Kimberling, Jun 01 2012

Keywords

Comments

In the following guide to related sequences: M=max(x,y,z), m=min(x,y,z), and R=range=M-m. In some cases, it is an offset of the listed sequence which fits the conditions shown for w,x,y. Each sequence satisfies a linear recurrence relation, some of which are identified in the list by the following code (signature):
A: 2, 0, -2, 1, i.e., a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4);
B: 3, -2, -2, 3, -1;
C: 4, -6, 4, -1;
D: 1, 2, -2, -1, 1;
E: 2, 1, -4, 1, 2, -1;
F: 2, -1, 1, -2, 1;
G: 2, -1, 0, 1, -2, 1;
H: 2, -1, 2, -4, 2, -1, 2, -1;
I: 3, -3, 2, -3, 3, -1;
J: 4, -7, 8, -7, 4, -1.
...
A212959 ... |w-x|=|x-y| ...... recurrence type A
A212960 ... |w-x| != |x-y| ................... B
A212683 ... |w-x| < |x-y| .................... B
A212684 ... |w-x| >= |x-y| ................... B
A212963 ... see entry for definition ......... B
A212964 ... |w-x| < |x-y| < |y-w| ............ B
A006331 ... |w-x| < y ........................ C
A005900 ... |w-x| <= y ....................... C
A212965 ... w = R ............................ D
A212966 ... 2*w = R
A212967 ... w < R ............................ E
A212968 ... w >= R ........................... E
A077043 ... w = x > R ........................ A
A212969 ... w != x and x > R ................. E
A212970 ... w != x and x < R ................. E
A055998 ... w = x + y - 1
A011934 ... w < floor((x+y)/2) ............... B
A182260 ... w > floor((x+y)/2) ............... B
A055232 ... w <= floor((x+y)/2) .............. B
A011934 ... w >= floor((x+y)/2) .............. B
A212971 ... w < floor((x+y)/3) ............... B
A212972 ... w >= floor((x+y)/3) .............. B
A212973 ... w <= floor((x+y)/3) .............. B
A212974 ... w > floor((x+y)/3) ............... B
A212975 ... R is even ........................ E
A212976 ... R is odd ......................... E
A212978 ... R = 2*n - w - x
A212979 ... R = average{w,x,y}
A212980 ... w < x + y and x < y .............. B
A212981 ... w <= x+y and x < y ............... B
A212982 ... w < x + y and x <= y ............. B
A212983 ... w <= x + y and x <= y ............ B
A002623 ... w >= x + y and x <= y ............ B
A087811 ... w = 2*x + y ...................... A
A008805 ... w = 2*x + 2*y .................... D
A000982 ... 2*w = x + y ...................... F
A001318 ... 2*w = 2*x + y .................... F
A001840 ... w = 3*x + y
A212984 ... 3*w = x + y
A212985 ... 3*w = 3*x + y
A001399 ... w = 2*x + 3*y
A212986 ... 2*w = 3*x + y
A008810 ... 3*x = 2*x + y .................... F
A212987 ... 3*w = 2*x + 2*y
A001972 ... w = 4*x + y ...................... G
A212988 ... 4*w = x + y ...................... G
A212989 ... 4*w = 4*x + y
A008812 ... 5*w = 2*x + 3*y
A016061 ... n < w + x + y <= 2*n ............. C
A000292 ... w + x + y <=n .................... C
A000292 ... 2*n < w + x + y <= 3*n ........... C
A212977 ... n/2 < w + x + y <= n
A143785 ... w < R < x ........................ E
A005996 ... w < R <= x ....................... E
A128624 ... w <= R <= x ...................... E
A213041 ... R = 2*|w - x| .................... A
A213045 ... R < 2*|w - x| .................... B
A087035 ... R >= 2*|w - x| ................... B
A213388 ... R <= 2*|w - x| ................... B
A171218 ... M < 2*m .......................... B
A213389 ... R < 2|w - x| ..................... E
A213390 ... M >= 2*m ......................... E
A213391 ... 2*M < 3*m ........................ H
A213392 ... 2*M >= 3*m ....................... H
A213393 ... 2*M > 3*m ........................ H
A213391 ... 2*M <= 3*m ....................... H
A047838 ... w = |x + y - w| .................. A
A213396 ... 2*w < |x + y - w| ................ I
A213397 ... 2*w >= |x + y - w| ............... I
A213400 ... w < R < 2*w
A069894 ... min(|w-x|,|x-y|) = 1
A000384 ... max(|w-x|,|x-y|) = |w-y|
A213395 ... max(|w-x|,|x-y|) = w
A213398 ... min(|w-x|,|x-y|) = x ............. A
A213399 ... max(|w-x|,|x-y|) = x ............. D
A213479 ... max(|w-x|,|x-y|) = w+x+y ......... D
A213480 ... max(|w-x|,|x-y|) != w+x+y ........ E
A006918 ... |w-x| + |x-y| > w+x+y ............ E
A213481 ... |w-x| + |x-y| <= w+x+y ........... E
A213482 ... |w-x| + |x-y| < w+x+y ............ E
A213483 ... |w-x| + |x-y| >= w+x+y ........... E
A213484 ... |w-x|+|x-y|+|y-w| = w+x+y
A213485 ... |w-x|+|x-y|+|y-w| != w+x+y ....... J
A213486 ... |w-x|+|x-y|+|y-w| > w+x+y ........ J
A213487 ... |w-x|+|x-y|+|y-w| >= w+x+y ....... J
A213488 ... |w-x|+|x-y|+|y-w| < w+x+y ........ J
A213489 ... |w-x|+|x-y|+|y-w| <= w+x+y ....... J
A213490 ... w,x,y,|w-x|,|x-y| distinct
A213491 ... w,x,y,|w-x|,|x-y| not distinct
A213493 ... w,x,y,|w-x|,|x-y|,|w-y| distinct
A213495 ... w = min(|w-x|,|x-y|,|w-y|)
A213492 ... w != min(|w-x|,|x-y|,|w-y|)
A213496 ... x != max(|w-x|,|x-y|)
A213498 ... w != max(|w-x|,|x-y|,|w-y|)
A213497 ... w = min(|w-x|,|x-y|)
A213499 ... w != min(|w-x|,|x-y|)
A213501 ... w != max(|w-x|,|x-y|)
A213502 ... x != min(|w-x|,|x-y|)
...
A211795 includes a guide for sequences that count 4-tuples (w,x,y,z) having all terms in {0,...,n} and satisfying selected properties. Some of the sequences indexed at A211795 satisfy recurrences that are represented in the above list.
Partial sums of the numbers congruent to {1,3} mod 6 (see A047241). - Philippe Deléham, Mar 16 2014

Examples

			a(1)=4 counts these (x,y,z): (0,0,0), (1,1,1), (0,1,0), (1,0,1).
Numbers congruent to {1, 3} mod 6: 1, 3, 7, 9, 13, 15, 19, ...
a(0) = 1;
a(1) = 1 + 3 = 4;
a(2) = 1 + 3 + 7 = 11;
a(3) = 1 + 3 + 7 + 9 = 20;
a(4) = 1 + 3 + 7 + 9 + 13 = 33;
a(5) = 1 + 3 + 7 + 9 + 13 + 15 = 48; etc. - _Philippe Deléham_, Mar 16 2014
		

References

  • A. Barvinok, Lattice Points and Lattice Polytopes, Chapter 7 in Handbook of Discrete and Computational Geometry, CRC Press, 1997, 133-152.
  • P. Gritzmann and J. M. Wills, Lattice Points, Chapter 3.2 in Handbook of Convex Geometry, vol. B, North-Holland, 1993, 765-797.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[Abs[w - x] == Abs[x - y], s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 50]]   (* A212959 *)
  • PARI
    a(n)=(6*n^2+8*n+3)\/4 \\ Charles R Greathouse IV, Jul 28 2015

Formula

a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: (1+2*x+3*x^2)/((1+x)*(1-x)^3).
a(n) + A212960(n) = (n+1)^3.
a(n) = (6*n^2 + 8*n + 3 + (-1)^n)/4. - Luce ETIENNE, Apr 05 2014
a(n) = 2*A069905(3*(n+1)+2) - 3*(n+1). - Ayoub Saber Rguez, Aug 31 2021

A255211 a(n) = n*(n+1)*(7*n+2)/6.

Original entry on oeis.org

0, 3, 16, 46, 100, 185, 308, 476, 696, 975, 1320, 1738, 2236, 2821, 3500, 4280, 5168, 6171, 7296, 8550, 9940, 11473, 13156, 14996, 17000, 19175, 21528, 24066, 26796, 29725, 32860, 36208, 39776, 43571, 47600, 51870, 56388, 61161, 66196, 71500, 77080, 82943
Offset: 0

Views

Author

Luce ETIENNE, Feb 17 2015

Keywords

Comments

a(n) is the number of triangles of all sizes in a polyiamond of trapezoid shape with 3 sides of length n and the base of length 2*n. The number of triangular cells in the trapezoid is 3*n^2. This is half of a regular hexagon with side lengths n.
The number of triangles oriented with their bases aligned with the base of the trapezoid is n*(n+1)*(2*n+1)/3 and the number oriented in the opposite direction is n^2*(n+1)/2. a(n) is the sum of these two.

Examples

			From the second comment: a(1)= 2+1, a(2)= 10+6, a(3)= 28+18, a(4)= 60+40.
		

Crossrefs

Partial sums of A022264.

Programs

  • Magma
    [n*(n+1)*(7*n+2)/6 : n in [0..50]]; // Wesley Ivan Hurt, Apr 11 2021
  • Mathematica
    Table[n (n + 1) (7 n + 2)/6, {n, 0, 50}] (* Bruno Berselli, Feb 17 2015 *)
  • PARI
    concat(0, Vec(x*(4*x+3)/(x-1)^4 + O(x^100))) \\ Colin Barker, Feb 17 2015
    
  • PARI
    vector(50, n, n--; n*(n+1)*(7*n+2)/6) \\ Bruno Berselli, Feb 17 2015
    

Formula

G.f.: x*(3 + 4*x) / (1 - x)^4. - Colin Barker, Feb 17 2015
a(n) = Sum_{j=0..n-1} (n-j)*(3*n-2*j) = Sum_{j=1..n} j*(n+2*j) for n>0.
a(n) = A000292(2*n) - A000292(n). - Bruno Berselli, Sep 22 2016
Sum_{n>=1} 1/a(n) = 21*HarmonicNumber(2/7)/5 - 6/5 = 0.44513027538601361333... . - Vaclav Kotesovec, Sep 22 2016
E.g.f.: exp(x)*x*(18 + 30*x + 7*x^2)/6. - Stefano Spezia, Mar 02 2025

Extensions

Edited and extended by Bruno Berselli, Dec 01 2016

A255687 a(n) = n*(n + 1)*(7*n + 11)/6.

Original entry on oeis.org

0, 6, 25, 64, 130, 230, 371, 560, 804, 1110, 1485, 1936, 2470, 3094, 3815, 4640, 5576, 6630, 7809, 9120, 10570, 12166, 13915, 15824, 17900, 20150, 22581, 25200, 28014, 31030, 34255, 37696, 41360, 45254, 49385, 53760, 58386, 63270, 68419, 73840, 79540, 85526
Offset: 0

Views

Author

Luce ETIENNE, Mar 02 2015

Keywords

Comments

This sequence gives the number of triangles of all sizes in (3*n^2+2*n)-polyiamonds in a pentagonal or heptagonal configuration.
Also sum of 2*n*(n+1)*(n+2)/3 triangles oriented in one direction and n*(n+1)^2/2 oriented in the opposite direction.

Crossrefs

First bisection of A212977.
Partial sums of A179986.

Programs

  • Magma
    [n*(n+1)*(7*n+11)/6: n in [0..50]]; // Bruno Berselli, Mar 02 2015
    
  • Maple
    A255687:=n->n*(n+1)*(7*n+11)/6: seq(A255687(n), n=0..50); # Wesley Ivan Hurt, Mar 03 2015
  • Mathematica
    Table[n (n + 1) (7 n + 11)/6, {n, 0, 50}] (* Bruno Berselli, Mar 02 2015 *)
    LinearRecurrence[{4,-6,4,-1},{0,6,25,64},50] (* Harvey P. Dale, Jul 17 2015 *)
  • PARI
    vector(50, n, n--; n*(n+1)*(7*n+11)/6)
    
  • PARI
    concat(0, Vec(x*(x+6)/(x-1)^4 + O(x^100))) \\ Colin Barker, Mar 02 2015
    
  • Sage
    [n*(n+1)*(7*n+11)/6 for n in (0..50)] # Bruno Berselli, Mar 02 2015

Formula

a(n) = (1/2)*(Sum_{j=0..n} (n+1-j)*(3*n-j) + Sum_{j=0..n-1} (n-j)*(3*n+1-3*j)).
From Colin Barker, Mar 02 2015: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: x*(x + 6)/(x - 1)^4. (End)
a(n) = -A007584(-n-1). - Bruno Berselli, Mar 02 2015
From Elmo R. Oliveira, Aug 18 2025: (Start)
E.g.f.: exp(x)*x*(36 + 39*x + 7*x^2)/6.
a(n) = A212977(2*n). (End)
Showing 1-3 of 3 results.