cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005064 Sum of cubes of primes dividing n.

Original entry on oeis.org

0, 8, 27, 8, 125, 35, 343, 8, 27, 133, 1331, 35, 2197, 351, 152, 8, 4913, 35, 6859, 133, 370, 1339, 12167, 35, 125, 2205, 27, 351, 24389, 160, 29791, 8, 1358, 4921, 468, 35, 50653, 6867, 2224, 133, 68921, 378, 79507, 1339, 152, 12175, 103823, 35, 343, 133, 4940, 2205, 148877, 35, 1456, 351, 6886, 24397, 205379, 160
Offset: 1

Views

Author

Keywords

Comments

The set of these terms is A213519. - Bernard Schott, Feb 11 2022
Inverse Möbius transform of n^3 * c(n), where c(n) is the prime characteristic (A010051). - Wesley Ivan Hurt, Jun 22 2024

Crossrefs

Sum of the k-th powers of the primes dividing n for k=0..10 : A001221 (k=0), A008472 (k=1), A005063 (k=2), this sequence (k=3), A005065 (k=4), A351193 (k=5), A351194 (k=6), A351195 (k=7), this sequence (k=8), A351197 (k=9), A351198 (k=10).

Programs

  • Mathematica
    Array[DivisorSum[#, #^3 &, PrimeQ] &, 60] (* Michael De Vlieger, Jul 11 2017 *)
    f[p_, e_] := p^3; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 20 2022 *)
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, f[k,1]^3); \\ Michel Marcus, Jul 11 2017
  • Python
    from sympy import primefactors
    def a(n): return sum(p**3 for p in primefactors(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 11 2017
    
  • Scheme
    (define (A005064 n) (if (= 1 n) 0 (+ (A000578 (A020639 n)) (A005064 (A028234 n))))) ;; Antti Karttunen, Jul 10 2017
    

Formula

Additive with a(p^e) = p^3.
G.f.: Sum_{k>=1} prime(k)^3*x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Dec 24 2016
From Antti Karttunen, Jul 11 2017: (Start)
a(n) = A005067(n) + 8*A059841(n).
a(n) = A005080(n) + A005084(n) + 8*A059841(n).
a(n) = A005072(n) + A005076(n) + 27*A079978(n).
(End)
Dirichlet g.f.: primezeta(s-3)*zeta(s). - Benedict W. J. Irwin, Jul 11 2018
a(n) = Sum_{p|n, p prime} p^3. - Wesley Ivan Hurt, Feb 04 2022
a(n) = Sum_{d|n} d^3 * c(d), where c = A010051. - Wesley Ivan Hurt, Jun 22 2024

Extensions

More terms from Antti Karttunen, Jul 10 2017

A121571 Largest number that is not the sum of n-th powers of distinct primes.

Original entry on oeis.org

6, 17163, 1866000
Offset: 1

Views

Author

T. D. Noe, Aug 08 2006

Keywords

Comments

As stated by Sierpinski, H. E. Richert proved a(1) = 6. Dressler et al. prove a(2) = 17163.
Fuller & Nichols prove T. D. Noe's conjecture that a(3) = 1866000. They also prove that 483370 positive numbers cannot be written as the sum of cubes of distinct primes. - Robert Nichols, Sep 08 2017
Noe conjectures that a(4) = 340250525752 and that 31332338304 positive numbers cannot be written as the sum of fourth powers of distinct primes. - Charles R Greathouse IV, Nov 04 2017

Examples

			a(1) = 6 because only the numbers 1, 4 and 6 are not the sum of distinct primes.
		

References

  • W. Sierpinski, Elementary Theory of Numbers, Warsaw, 1964, p. 143-144.

Crossrefs

Cf. A231407 (numbers that are not the sum of distinct primes).
Cf. A121518 (numbers that are not the sum of squares of distinct primes).
Cf. A213519 (numbers that are the sum of cubes of distinct primes).
Cf. A001661 (integers instead of primes).

Formula

a(1) = A231407(3), a(2) = A121518(2438). - Jonathan Sondow, Nov 26 2013

A351326 a(n) is the least number k such that k and all larger numbers can be expressed as the sum of n-th powers of distinct primes.

Original entry on oeis.org

7, 17164, 1866001
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 24 2022

Keywords

Crossrefs

Formula

a(n) = A121571(n) + 1.
Showing 1-3 of 3 results.