A220427 G.f.: exp( Sum_{n>=1} A005064(n)*x^n/n ), where A005064(n) = sum of cubes of primes dividing n.
1, 0, 4, 9, 10, 61, 65, 239, 440, 791, 2172, 3211, 8018, 14292, 27174, 56064, 96092, 195616, 345831, 643733, 1189397, 2102921, 3864549, 6804894, 12150956, 21419322, 37460309, 65511385, 113436266, 195931822, 336547491, 575446427, 979007055, 1660337942, 2800856388
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 4*x^2 + 9*x^3 + 10*x^4 + 61*x^5 + 65*x^6 + 239*x^7 +... where log(A(x)) = 8*x^2/2 + 27*x^3/3 + 8*x^4/4 + 125*x^5/5 + 35*x^6/6 + 343*x^7/7 + 8*x^8/8 + 27*x^9/9 + 133*x^10/10 + 1331*x^11/11 + 35*x^12/12 + 2197*x^13/13 + 351*x^14/14 + 152*x^15/15 +...+ A005064(n)*x^n/n +...
Programs
-
PARI
{a(n)=polcoeff(exp(sum(k=1,n+1,sumdiv(k,d,isprime(d)*d^3)*x^k/k)+x*O(x^n)),n)} for(n=0,40,print1(a(n),", "))
Comments