A213832
Principal diagonal of the convolution array A213831.
Original entry on oeis.org
1, 19, 78, 202, 415, 741, 1204, 1828, 2637, 3655, 4906, 6414, 8203, 10297, 12720, 15496, 18649, 22203, 26182, 30610, 35511, 40909, 46828, 53292, 60325, 67951, 76194, 85078, 94627, 104865, 115816, 127504
Offset: 1
A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A081436
Fifth subdiagonal in array of n-gonal numbers A081422.
Original entry on oeis.org
1, 7, 24, 58, 115, 201, 322, 484, 693, 955, 1276, 1662, 2119, 2653, 3270, 3976, 4777, 5679, 6688, 7810, 9051, 10417, 11914, 13548, 15325, 17251, 19332, 21574, 23983, 26565, 29326, 32272, 35409, 38743, 42280, 46026, 49987, 54169, 58578, 63220
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- Christian Barrientos, The number of spanning trees of cyclic snakes, Indones. J. Comb. (2025) Vol. 9, No. 1, 21-30. See p. 29.
- J. A. Dias da Silva and Pedro J. Freitas, Counting Spectral Radii of Matrices with Positive Entries, arXiv:1305.1139 [math.CO], 2013.
- Theorem of the Day, Lovász Local Lemma example involving intersecting pairs of multisets
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
List([0..40], n-> (n+1)*(2*(n+1)^2-n)/2); # G. C. Greubel, Aug 14 2019
-
[(2*n^3+5*n^2+5*n+2)/2: n in [0..40]]; // Vincenzo Librandi, Jul 19 2011
-
A081436 := proc(n)
(n+1)*(2*n^2+3*n+2)/2 ;
end proc:
seq(A081436(n),n=0..60) ; # R. J. Mathar, Jun 26 2013
-
LinearRecurrence[{4, -6, 4, -1}, {1, 7, 24, 58}, 40] (* Jean-François Alcover, Sep 21 2017 *)
-
a(n)=n^3+5/2*n*(n+1)+1 \\ Charles R Greathouse IV, Jun 20 2013
-
[(n+1)*(2*(n+1)^2-n)/2 for n in (0..40)] # G. C. Greubel, Aug 14 2019
A162254
a(n) = n*(2*n^2 + 5*n + 1)/2.
Original entry on oeis.org
4, 19, 51, 106, 190, 309, 469, 676, 936, 1255, 1639, 2094, 2626, 3241, 3945, 4744, 5644, 6651, 7771, 9010, 10374, 11869, 13501, 15276, 17200, 19279, 21519, 23926, 26506, 29265, 32209, 35344, 38676, 42211, 45955, 49914, 54094, 58501, 63141
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Isaac Mammel, William Smith, and Carl Yerger, Ramsey Theory on the Integer Grid: The "L" Problem, arXiv:2502.05162 [math.CO], 2025. See p. 14.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
LinearRecurrence[{4,-6,4,-1}, {4, 19, 51, 106}, 50] (* or *) CoefficientList[Series[(4+3*x-x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Mar 04 2012 *)
-
a(n)=n*(5*n+1)/2+n^3 \\ Charles R Greathouse IV, Jan 11 2012
A212560
Number of (w,x,y,z) with all terms in {1,...,n} and w+x<=y+z.
Original entry on oeis.org
0, 1, 11, 50, 150, 355, 721, 1316, 2220, 3525, 5335, 7766, 10946, 15015, 20125, 26440, 34136, 43401, 54435, 67450, 82670, 100331, 120681, 143980, 170500, 200525, 234351, 272286, 314650, 361775, 414005, 471696, 535216, 604945, 681275
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w + x <= y + z, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 40]] (* A212560 *)
-
a(n)=(n+2*n^3+3*n^4)/6 \\ Charles R Greathouse IV, Oct 21 2022
Showing 1-5 of 5 results.
Comments