A083487
Triangle read by rows: T(n,k) = 2*n*k + n + k (1 <= k <= n).
Original entry on oeis.org
4, 7, 12, 10, 17, 24, 13, 22, 31, 40, 16, 27, 38, 49, 60, 19, 32, 45, 58, 71, 84, 22, 37, 52, 67, 82, 97, 112, 25, 42, 59, 76, 93, 110, 127, 144, 28, 47, 66, 85, 104, 123, 142, 161, 180, 31, 52, 73, 94, 115, 136, 157, 178, 199, 220, 34, 57, 80, 103, 126, 149, 172, 195, 218, 241, 264
Offset: 1
Artemario Tadeu Medeiros da Silva (artemario(AT)uol.com.br), Jun 09 2003
Triangle begins:
4;
7, 12;
10, 17, 24;
13, 22, 31, 40;
16, 27, 38, 49, 60;
19, 32, 45, 58, 71, 84;
22, 37, 52, 67, 82, 97, 112;
25, 42, 59, 76, 93, 110, 127, 144;
28, 47, 66, 85, 104, 123, 142, 161, 180;
-
[(2*n*k + n + k): k in [1..n], n in [1..11]]; // Vincenzo Librandi, Jun 01 2014
-
T[n_,k_]:= 2 n k + n + k; Table[T[n, k], {n, 10}, {k, n}]//Flatten (* Vincenzo Librandi, Jun 01 2014 *)
-
def T(r, c): return 2*r*c + r + c
a = [T(r, c) for r in range(12) for c in range(1, r+1)]
print(a) # Michael S. Branicky, Sep 07 2022
-
flatten([[2*n*k +n +k for k in range(1,n+1)] for n in range(1,14)]) # G. C. Greubel, Oct 17 2023
A213831
Rectangular array: (row n) = b**c, where b(h) = 2*h-1, c(h) = 3*n-5+3*h, n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 7, 4, 24, 19, 7, 58, 51, 31, 10, 115, 106, 78, 43, 13, 201, 190, 154, 105, 55, 16, 322, 309, 265, 202, 132, 67, 19, 484, 469, 417, 340, 250, 159, 79, 22, 693, 676, 616, 525, 415, 298, 186, 91, 25, 955, 936, 868, 763, 633
Offset: 1
1....7....24....58....115
4....19...51....106...190
7....31...78....154...265
10...43...105...202...340
13...55...132...250...415
-
b[n_]:=2n-1;c[n_]:=3n-2;
t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}]
TableForm[Table[t[n,k],{n,1,10},{k,1,10}]]
Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]]
r[n_]:=Table[t[n,k],{k,1,60}] (* A213831 *)
Table[t[n,n],{n,1,40}] (* A213832 *)
s[n_]:=Sum[t[i,n+1-i],{i,1,n}]
Table[s[n],{n,1,50}] (* A212560 *)
A155156
Triangle T(n, k) = 4*n*k + 2*n + 2*k, read by rows.
Original entry on oeis.org
8, 14, 24, 20, 34, 48, 26, 44, 62, 80, 32, 54, 76, 98, 120, 38, 64, 90, 116, 142, 168, 44, 74, 104, 134, 164, 194, 224, 50, 84, 118, 152, 186, 220, 254, 288, 56, 94, 132, 170, 208, 246, 284, 322, 360, 62, 104, 146, 188, 230, 272, 314, 356, 398, 440, 68, 114, 160, 206, 252, 298, 344, 390, 436, 482, 528
Offset: 1
Triangle begins:
8;
14, 24;
20, 34, 48;
26, 44, 62, 80;
32, 54, 76, 98, 120;
38, 64, 90, 116, 142, 168;
44, 74, 104, 134, 164, 194, 224;
50, 84, 118, 152, 186, 220, 254, 288;
56, 94, 132, 170, 208, 246, 284, 322, 360;
62, 104, 146, 188, 230, 272, 314, 356, 398, 440;
-
[4*n*k + 2*n + 2*k : k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 21 2012
-
seq(seq( 2*(2*n*k +n+k), k=1..n), n=1..15); # G. C. Greubel, Mar 20 2021
-
T[n_,k_]:=4*n*k +2*n +2*k; Table[T[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 21 2012 *)
-
flatten([[2*(2*n*k +n+k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 20 2021
A163832
a(n) = n*(2*n^2 + 5*n + 1).
Original entry on oeis.org
0, 8, 38, 102, 212, 380, 618, 938, 1352, 1872, 2510, 3278, 4188, 5252, 6482, 7890, 9488, 11288, 13302, 15542, 18020, 20748, 23738, 27002, 30552, 34400, 38558, 43038, 47852, 53012, 58530, 64418, 70688, 77352, 84422, 91910, 99828, 108188, 117002
Offset: 0
-
Table[n(2n^2+5n+1),{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,8,38,102},40] (* Harvey P. Dale, Feb 02 2012 *)
-
for(n=0, 40, print1(n*(2*n^2+5*n+1)", ")); \\ Vincenzo Librandi, Feb 22 2012
A360665
Square array T(n, k) = k*((2*n-1)*k+1)/2 read by rising antidiagonals.
Original entry on oeis.org
0, 0, 0, 0, 1, -1, 0, 2, 3, -3, 0, 3, 7, 6, -6, 0, 4, 11, 15, 10, -10, 0, 5, 15, 24, 26, 15, -15, 0, 6, 19, 33, 42, 40, 21, -21, 0, 7, 23, 42, 58, 65, 57, 28, -28, 0, 8, 27, 51, 74, 90, 93, 77, 36, -36, 0, 9, 31, 60, 90, 115, 129, 126, 100, 45, -45
Offset: 0
By rows:
0, 0, -1, -3, -6, -10, -15, -21, -28, ... = -A161680
0, 1, 3, 6, 10, 15, 21, 28, 36, ... = A000217
0, 2, 7, 15, 26, 40, 57, 77, 100, ... = A005449
0, 3, 11, 24, 42, 65, 93, 126, 164, ... = A005475
0, 4, 15, 33, 58, 90, 129, 175, 228, ... = A022265
0, 5, 19, 42, 74, 115, 165, 224, 292, ... = A022267
0, 6, 23, 51, 90, 140, 201, 273, 356, ... = A022269
... .
Cf. Antidiagonal sums:
A034827(n+1).
-
T[n_, k_] := ((2*n - 1)*k^2 + k)/2; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 31 2023 *)
-
T(n, k) = ((2*n-1)*k^2+k)/2 \\ Thomas Scheuerle, Mar 17 2023
Showing 1-5 of 5 results.
Comments