cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A009768 Expansion of e.g.f. tanh(exp(x)*x).

Original entry on oeis.org

0, 1, 2, 1, -20, -159, -594, 2465, 69560, 665665, 1593850, -67177791, -1413216540, -12990964063, 64480265318, 4811655319393, 90259507840240, 540272971703937, -20890652777843598, -798235260367432831, -12766815370452348580
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Tanh[Exp[x]*x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jun 03 2023 *)
  • PARI
    my(x='x+O('x^30)); concat(0, Vec(serlaplace(tanh(exp(x)*x)))) \\ Michel Marcus, Oct 01 2021

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
Previous Mathematica program replaced by Harvey P. Dale, Jun 03 2023

A191719 Expansion of e.g.f. arctan(x*exp(x)).

Original entry on oeis.org

0, 1, 2, 1, -20, -151, -354, 6217, 100472, 537777, -7631270, -223395919, -2120164188, 22050300505, 1154262915638, 17130776734905, -105423782758544, -11372993234072863, -245877012220234446, 345837436238423521, 188329590656514108380
Offset: 0

Views

Author

Vladimir Kruchinin, Jun 13 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[ArcTan[x*Exp[x]],{x,0,20}],x]*Range[0,20]!] (* Vaclav Kotesovec, Jan 02 2014 *)
  • Maxima
    a(n):=n!*sum(((2*m-1)^(n-2*m)*(-1)^(m-1))/(n-2*m+1)!,m,1,(n+1)/2);

Formula

a(n) = n!*Sum_{m=1..(n+1)/2} ((2*m-1)^(n-2*m)*(-1)^(m-1))/(n-2*m+1)!.
a(n) ~ (n-1)! * sin(n*arctan(1/tan(r))) * (cos(r)/r)^n, where r = Im(LambertW(I)) = A305200 = 0.576412723031435283148289239887... is the root of the equation exp(r*tan(r))=cos(r)/r. - Vaclav Kotesovec, Jan 02 2014

Extensions

a(0)=0 prepended by Seiichi Manyama, Oct 01 2021

A297009 Expansion of e.g.f. arcsin(x*exp(x)).

Original entry on oeis.org

0, 1, 2, 4, 16, 104, 816, 7792, 89216, 1177920, 17603200, 294334976, 5442281472, 110221745152, 2426850793472, 57718658411520, 1474590580228096, 40274407232294912, 1171043235561185280, 36115912820342407168, 1177554628069200035840, 40471207964013864124416
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 23 2017

Keywords

Examples

			arcsin(x*exp(x)) = x^1/1! + 2*x^2/2! + 4*x^3/3! + 16*x^4/4! + 104*x^5/5! + 816*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(arcsin(x*exp(x)),x=0,22): seq(n!*coeff(a,x,n),n=0..21); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 21; CoefficientList[Series[ArcSin[x Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[-I Log[I x Exp[x] + Sqrt[1 - x^2 Exp[2 x]]], {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    first(n) = my(x='x+O('x^n)); Vec(serlaplace(asin(exp(x)*x)), -n) \\ Iain Fox, Dec 23 2017

Formula

a(n) ~ sqrt(1 + LambertW(1)) * n^(n-1) / (exp(n) * LambertW(1)^n). - Vaclav Kotesovec, Mar 26 2019

A297010 Expansion of e.g.f. arcsinh(x*exp(x)).

Original entry on oeis.org

0, 1, 2, 2, -8, -76, -264, 1672, 36800, 261648, -1443680, -66164704, -792152448, 2482671424, 289529373056, 5294082629760, 1648955815936, -2474170098704128, -65494141255724544, -303927676523118080, 35926135133071923200, 1341060635191667045376
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 23 2017

Keywords

Examples

			arcsinh(x*exp(x)) = x^1/1! + 2*x^2/2! + 2*x^3/3! - 8*x^4/4! - 76*x^5/5! - 264*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(arcsinh(x*exp(x)),x=0,22): seq(n!*coeff(a,x,n),n=0..21); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 21; CoefficientList[Series[ArcSinh[x Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[Log[x Exp[x] + Sqrt[1 + x^2 Exp[2 x]]], {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    first(n) = my(x='x+O('x^n)); Vec(serlaplace(asinh(exp(x)*x)), -n) \\ Iain Fox, Dec 23 2017

A275385 Number of labeled functional digraphs on n nodes with only odd sized cycles and such that every vertex is at a distance of at most 1 from a cycle.

Original entry on oeis.org

1, 1, 3, 12, 73, 580, 5601, 63994, 844929, 12647016, 211616065, 3914510446, 79320037281, 1747219469164, 41569414869633, 1062343684252530, 29023112392093441, 844101839207139280, 26038508978625589377, 849150487829425227094, 29189561873274715264545
Offset: 0

Views

Author

Geoffrey Critzer, Jul 25 2016

Keywords

Comments

Equivalently, these are the functions counted by A116956 with the additional constraint that every element is mapped to a recurrent element. A recurrent element is an element on a cycle in the functional digraph.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(`if`(j::odd,
           (j-1)!*b(n-j)*binomial(n-1, j-1), 0), j=1..n))
        end:
    a:= n-> add(b(j)*j^(n-j)*binomial(n, j), j=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 25 2016
  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[Series[Sqrt[(1 + z*Exp[z])/(1 - z*Exp[z])], {z, 0, nn}], z]
  • PARI
    default(seriesprecision, 30);
    S=sqrt((1 + x*exp(x))/(1 - x*exp(x)));
    v=Vec(S); for(n=2,#v-1,v[n+1]*=n!); v \\ Charles R Greathouse IV, Jul 29 2016

Formula

E.g.f.: sqrt((1 + z*exp(z))/(1 - z*exp(z))).
Exponential transform of A216401.
a(n) ~ 2 * n^n / (sqrt(1+LambertW(1)) * LambertW(1)^n * exp(n)). - Vaclav Kotesovec, Jun 26 2022

A294312 Expansion of e.g.f. sec(x*exp(x)).

Original entry on oeis.org

1, 0, 1, 6, 29, 180, 1501, 14434, 154265, 1856232, 24953401, 368767102, 5936244533, 103519338780, 1944554725205, 39134556793050, 840024295910833, 19157944025344464, 462629389438242673, 11792248121970820598, 316398168231432879565, 8913743651504295251844
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 27 2017

Keywords

Examples

			sec(x*exp(x)) = 1 + x^2/2! + 6*x^3/3! + 29*x^4/4! + 180*x^5/5! + 1501*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(sec(x*exp(x)),x=0,22): seq(n!*coeff(a,x,n),n=0..21); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 21; CoefficientList[Series[Sec[x Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[1/Cos[x Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!

A294313 Expansion of e.g.f. sech(x*exp(x)).

Original entry on oeis.org

1, 0, -1, -6, -19, 20, 899, 7966, 27705, -366552, -8374201, -80690302, 9794597, 16015845820, 317370642315, 2554368906150, -37571987331343, -1784464543440304, -31315944840101233, -80221319702865398, 12685422355781995485, 422083364962616527716
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 27 2017

Keywords

Examples

			sech(x*exp(x)) = 1 - x^2/2! - 6*x^3/3! - 19*x^4/4! + 20*x^5/5! + 899*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(sech(x*exp(x)),x=0,22): seq(n!*coeff(a,x,n),n=0..21); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 21; CoefficientList[Series[Sech[x Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[1/Cosh[x Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
Showing 1-7 of 7 results.