A009768
Expansion of e.g.f. tanh(exp(x)*x).
Original entry on oeis.org
0, 1, 2, 1, -20, -159, -594, 2465, 69560, 665665, 1593850, -67177791, -1413216540, -12990964063, 64480265318, 4811655319393, 90259507840240, 540272971703937, -20890652777843598, -798235260367432831, -12766815370452348580
Offset: 0
-
With[{nn=20},CoefficientList[Series[Tanh[Exp[x]*x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jun 03 2023 *)
-
my(x='x+O('x^30)); concat(0, Vec(serlaplace(tanh(exp(x)*x)))) \\ Michel Marcus, Oct 01 2021
A191719
Expansion of e.g.f. arctan(x*exp(x)).
Original entry on oeis.org
0, 1, 2, 1, -20, -151, -354, 6217, 100472, 537777, -7631270, -223395919, -2120164188, 22050300505, 1154262915638, 17130776734905, -105423782758544, -11372993234072863, -245877012220234446, 345837436238423521, 188329590656514108380
Offset: 0
-
Rest[CoefficientList[Series[ArcTan[x*Exp[x]],{x,0,20}],x]*Range[0,20]!] (* Vaclav Kotesovec, Jan 02 2014 *)
-
a(n):=n!*sum(((2*m-1)^(n-2*m)*(-1)^(m-1))/(n-2*m+1)!,m,1,(n+1)/2);
A297009
Expansion of e.g.f. arcsin(x*exp(x)).
Original entry on oeis.org
0, 1, 2, 4, 16, 104, 816, 7792, 89216, 1177920, 17603200, 294334976, 5442281472, 110221745152, 2426850793472, 57718658411520, 1474590580228096, 40274407232294912, 1171043235561185280, 36115912820342407168, 1177554628069200035840, 40471207964013864124416
Offset: 0
arcsin(x*exp(x)) = x^1/1! + 2*x^2/2! + 4*x^3/3! + 16*x^4/4! + 104*x^5/5! + 816*x^6/6! + ...
-
a:=series(arcsin(x*exp(x)),x=0,22): seq(n!*coeff(a,x,n),n=0..21); # Paolo P. Lava, Mar 26 2019
-
nmax = 21; CoefficientList[Series[ArcSin[x Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 21; CoefficientList[Series[-I Log[I x Exp[x] + Sqrt[1 - x^2 Exp[2 x]]], {x, 0, nmax}], x] Range[0, nmax]!
-
first(n) = my(x='x+O('x^n)); Vec(serlaplace(asin(exp(x)*x)), -n) \\ Iain Fox, Dec 23 2017
A297010
Expansion of e.g.f. arcsinh(x*exp(x)).
Original entry on oeis.org
0, 1, 2, 2, -8, -76, -264, 1672, 36800, 261648, -1443680, -66164704, -792152448, 2482671424, 289529373056, 5294082629760, 1648955815936, -2474170098704128, -65494141255724544, -303927676523118080, 35926135133071923200, 1341060635191667045376
Offset: 0
arcsinh(x*exp(x)) = x^1/1! + 2*x^2/2! + 2*x^3/3! - 8*x^4/4! - 76*x^5/5! - 264*x^6/6! + ...
-
a:=series(arcsinh(x*exp(x)),x=0,22): seq(n!*coeff(a,x,n),n=0..21); # Paolo P. Lava, Mar 26 2019
-
nmax = 21; CoefficientList[Series[ArcSinh[x Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 21; CoefficientList[Series[Log[x Exp[x] + Sqrt[1 + x^2 Exp[2 x]]], {x, 0, nmax}], x] Range[0, nmax]!
-
first(n) = my(x='x+O('x^n)); Vec(serlaplace(asinh(exp(x)*x)), -n) \\ Iain Fox, Dec 23 2017
A275385
Number of labeled functional digraphs on n nodes with only odd sized cycles and such that every vertex is at a distance of at most 1 from a cycle.
Original entry on oeis.org
1, 1, 3, 12, 73, 580, 5601, 63994, 844929, 12647016, 211616065, 3914510446, 79320037281, 1747219469164, 41569414869633, 1062343684252530, 29023112392093441, 844101839207139280, 26038508978625589377, 849150487829425227094, 29189561873274715264545
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1, add(`if`(j::odd,
(j-1)!*b(n-j)*binomial(n-1, j-1), 0), j=1..n))
end:
a:= n-> add(b(j)*j^(n-j)*binomial(n, j), j=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 25 2016
-
nn = 20; Range[0, nn]! CoefficientList[Series[Sqrt[(1 + z*Exp[z])/(1 - z*Exp[z])], {z, 0, nn}], z]
-
default(seriesprecision, 30);
S=sqrt((1 + x*exp(x))/(1 - x*exp(x)));
v=Vec(S); for(n=2,#v-1,v[n+1]*=n!); v \\ Charles R Greathouse IV, Jul 29 2016
A294312
Expansion of e.g.f. sec(x*exp(x)).
Original entry on oeis.org
1, 0, 1, 6, 29, 180, 1501, 14434, 154265, 1856232, 24953401, 368767102, 5936244533, 103519338780, 1944554725205, 39134556793050, 840024295910833, 19157944025344464, 462629389438242673, 11792248121970820598, 316398168231432879565, 8913743651504295251844
Offset: 0
sec(x*exp(x)) = 1 + x^2/2! + 6*x^3/3! + 29*x^4/4! + 180*x^5/5! + 1501*x^6/6! + ...
Cf.
A000364,
A009007,
A009017,
A009121,
A009300,
A009448,
A009565,
A009635,
A009768,
A139134,
A191719,
A216401,
A217502,
A294313,
A297009,
A297010.
-
a:=series(sec(x*exp(x)),x=0,22): seq(n!*coeff(a,x,n),n=0..21); # Paolo P. Lava, Mar 27 2019
-
nmax = 21; CoefficientList[Series[Sec[x Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 21; CoefficientList[Series[1/Cos[x Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
A294313
Expansion of e.g.f. sech(x*exp(x)).
Original entry on oeis.org
1, 0, -1, -6, -19, 20, 899, 7966, 27705, -366552, -8374201, -80690302, 9794597, 16015845820, 317370642315, 2554368906150, -37571987331343, -1784464543440304, -31315944840101233, -80221319702865398, 12685422355781995485, 422083364962616527716
Offset: 0
sech(x*exp(x)) = 1 - x^2/2! - 6*x^3/3! - 19*x^4/4! + 20*x^5/5! + 899*x^6/6! + ...
Cf.
A000364,
A009017,
A009121,
A009301,
A009448,
A009565,
A009635,
A009768,
A191719,
A216401,
A217502,
A294312,
A296544,
A297009,
A297010.
-
a:=series(sech(x*exp(x)),x=0,22): seq(n!*coeff(a,x,n),n=0..21); # Paolo P. Lava, Mar 27 2019
-
nmax = 21; CoefficientList[Series[Sech[x Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 21; CoefficientList[Series[1/Cosh[x Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
Showing 1-7 of 7 results.
Comments