cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A033205 Primes of form x^2 + 5*y^2.

Original entry on oeis.org

5, 29, 41, 61, 89, 101, 109, 149, 181, 229, 241, 269, 281, 349, 389, 401, 409, 421, 449, 461, 509, 521, 541, 569, 601, 641, 661, 701, 709, 761, 769, 809, 821, 829, 881, 929, 941, 1009, 1021, 1049, 1061, 1069, 1109, 1129, 1181, 1201, 1229, 1249, 1289, 1301, 1321, 1361, 1381, 1409, 1429, 1481, 1489
Offset: 1

Views

Author

Keywords

Comments

It is a classical result that p is of the form x^2 + 5y^2 if and only if p = 5 or p == 1 or 9 mod 20 (see Cox, page 33). - N. J. A. Sloane, Sep 20 2012
Except for 5, also primes of the form x^2 + 25y^2. See A140633. - T. D. Noe, May 19 2008
Or, 5 and all primes p that divide Fibonacci((p - 1)/2) = A121568(n). - Alexander Adamchuk, Aug 07 2006

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989; see p. 33.

Crossrefs

Subsequence of A091729.
Primes in A020669 (numbers of form x^2+5y^2). Cf. A121568, A139643, A216815.
Cf. A029718, A106865 (in the same genus).

Programs

  • Magma
    [p: p in PrimesUpTo(2000) | NormEquation(5,p) eq true]; // Bruno Berselli, Jul 03 2016
    
  • Mathematica
    QuadPrimes2[1, 0, 5, 10000] (* see A106856 *)
  • PARI
    is(n)=my(k=n%20); n==5 || ((k==9 || k==9) && isprime(n)) \\ Charles R Greathouse IV, Feb 09 2017

Formula

A020669 INTERSECT A000040.
a(n) ~ 4n log n. - Charles R Greathouse IV, Nov 09 2012

A020669 Numbers of form x^2 + 5 y^2.

Original entry on oeis.org

0, 1, 4, 5, 6, 9, 14, 16, 20, 21, 24, 25, 29, 30, 36, 41, 45, 46, 49, 54, 56, 61, 64, 69, 70, 80, 81, 84, 86, 89, 94, 96, 100, 101, 105, 109, 116, 120, 121, 125, 126, 129, 134, 141, 144, 145, 149, 150, 161, 164, 166, 169, 174, 180, 181, 184, 189, 196, 201, 205, 206, 214, 216
Offset: 1

Views

Author

Keywords

Comments

In other words, numbers represented by quadratic form with Gram matrix [1,0; 0,5].
x^2 + 5 y^2 has discriminant -20.
A positive integer n is in this sequence if and only if the p-adic order ord_p(n) of n is even for any prime p with floor(p/10) odd, and the number of prime divisors p == 3 or 7 (mod 20) of n with ord_p(n) odd has the same parity with ord_2(n). - Zhi-Wei Sun, Mar 24 2018

References

  • H. Cohn, A second course in number theory, John Wiley & Sons, Inc., New York-London, 1962. See pp. 3, 4 and later chapters.
  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989. See Eq. (2.22), p. 33.

Crossrefs

For primes see A033205.
For the properly represented numbers see A344231.

Programs

  • Magma
    [n: n in [0..216] | NormEquation(5, n) eq true]; // Arkadiusz Wesolowski, May 11 2016
  • Maple
    select(t -> [isolve(x^2+5*y^2=t)]<>[], [$0..1000]); # Robert Israel, May 11 2016
  • Mathematica
    formQ[n_] := Reduce[x >= 0 && y >= 0 && n == x^2 + 5 y^2, {x, y}, Integers] =!= False; Select[ Range[0, 300], formQ] (* Jean-François Alcover, Sep 20 2011 *)
    mx = 300;
    limx = Sqrt[mx]; limy = Sqrt[mx/5];
    Select[
    Union[
    Flatten[
    Table[x^2 + 5*y^2, {x, 0, limx}, {y, 0, limy}]
           ]
         ], # <= mx &
    ] (* T. D. Noe, Sep 20 2011 *)

Formula

List contains 0 and all positive n such that 2*A035170(n) = A028586(2n) is nonzero. - Michael Somos, Oct 21 2006

Extensions

Entry revised by N. J. A. Sloane, Sep 20 2012

A122870 Primes congruent to 3 or 7 mod 20.

Original entry on oeis.org

3, 7, 23, 43, 47, 67, 83, 103, 107, 127, 163, 167, 223, 227, 263, 283, 307, 347, 367, 383, 443, 463, 467, 487, 503, 523, 547, 563, 587, 607, 643, 647, 683, 727, 743, 787, 823, 827, 863, 883, 887, 907, 947, 967, 983, 1063, 1087, 1103, 1123, 1163, 1187, 1223
Offset: 1

Views

Author

Alexander Adamchuk, Sep 16 2006

Keywords

Comments

The old name was "Primes p that divide Lucas((p+1)/2) = A000032((p+1)/2)".
Note that F(p+1) = F((p+1)/2)*Lucas((p+1)/2), where F = A000045. Since gcd(F(n),Lucas(n)) = 1 or 2 (because Lucas(n)^2 - 5*F(n)^2 = 4*(-1)^n), this sequence (under the old definition above) lists primes p such that p divides F(p+1) but does not divides F((p+1)/2). By Propositions 1.1 and 1.2 (the k = 3 case) of my link below, this is primes p == 3, 7 (mod 20). - Jianing Song, Jun 20 2025

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989; see p. 33.

Crossrefs

Subseqeunce of A002145, A003631, A049098, A053027. Essentially the same as A106865.

Programs

  • Magma
    [p: p in PrimesUpTo(1500) | p mod 20 in [3, 7]]; // Vincenzo Librandi, Jan 06 2013
  • Mathematica
    Select[Prime[Range[1000]],IntegerQ[(Fibonacci[(#1+1)/2-1]+Fibonacci[(#1+1)/2+1])/#1]&]
    Select[Prime[Range[300]], MemberQ[{3, 7}, Mod[#, 20]]&] (* Vincenzo Librandi, Jan 06 2013 *)

Extensions

I merged A216816 into this entry at the suggestion of Jianing Song, Jun 20 2025. - N. J. A. Sloane, Jun 22 2025

A228141 Numbers that are congruent to {1, 5} mod 20.

Original entry on oeis.org

1, 5, 21, 25, 41, 45, 61, 65, 81, 85, 101, 105, 121, 125, 141, 145, 161, 165, 181, 185, 201, 205, 221, 225, 241, 245, 261, 265, 281, 285, 301, 305, 321, 325, 341, 345, 361, 365, 381, 385, 401, 405, 421, 425, 441, 445, 461, 465, 481, 485, 501, 505, 521, 525
Offset: 1

Views

Author

Colin Barker, Aug 12 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[Table[20n + {1, 5}, {n, 0, 24}]] (* Alonso del Arte, Aug 12 2013 *)
  • PARI
    Vec(x*(15*x^2+4*x+1)/((x-1)^2*(x+1)) + O(x^100))

Formula

a(n) = -3*(4+(-1)^n) + 10*n.
a(n) = a(n-1) + a(n-2) - a(n-3).
G.f.: x*(15*x^2+4*x+1) / ((x-1)^2*(x+1)).
E.g.f.: 15 + (10*x - 12)*exp(x) - 3*exp(-x). - David Lovler, Sep 05 2022
Showing 1-4 of 4 results.