cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A217389 Partial sums of the ordered Bell numbers (number of preferential arrangements) A000670.

Original entry on oeis.org

1, 2, 5, 18, 93, 634, 5317, 52610, 598445, 7685706, 109933269, 1732565842, 29824133437, 556682481818, 11198025452261, 241481216430114, 5557135898411469, 135927902927547370, 3521462566184392693, 96323049885512803826, 2774010846129897006941, 83898835844633970888762
Offset: 0

Views

Author

Emanuele Munarini, Oct 02 2012

Keywords

Crossrefs

See A239914 for another version.

Programs

  • Magma
    A000670:=func;
    [&+[A000670(k): k in [0..n]]: n in [0..19]]; // Bruno Berselli, Oct 03 2012
    
  • Maple
    b:= proc(n, k) option remember;
         `if`(n=0, k!, k*b(n-1, k)+b(n-1, k+1))
        end:
    a:= proc(n) option remember; `if`(n<0, 0, a(n-1)+b(n, 0)) end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Feb 20 2025
  • Mathematica
    t[n_] := Sum[StirlingS2[n, k]k!, {k, 0, n}]; Table[Sum[t[k], {k, 0, n}], {n, 0, 100}]
    (* second program: *)
    Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Fubini[0, 1] = 1; Table[Fubini[n, 1], {n, 0, 20}] // Accumulate (* Jean-François Alcover, Mar 31 2016 *)
  • Maxima
    t(n):=sum(stirling2(n,k)*k!,k,0,n);
    makelist(sum(t(k),k,0,n),n,0,40);
    
  • PARI
    for(n=0,30, print1(sum(k=0,n, sum(j=0,k, j!*stirling(k,j,2))), ", ")) \\ G. C. Greubel, Feb 07 2018

Formula

a(n) = Sum_{k=0..n} t(k), where t = A000670 (ordered Bell numbers).
G.f. = A(x)/(1-x), where A(x) = g.f. for A000670 (see that entry). - N. J. A. Sloane, Apr 12 2014
a(n) ~ n! / (2* (log(2))^(n+1)). - Vaclav Kotesovec, Nov 08 2014

A006957 Self-convolution of numbers of preferential arrangements.

Original entry on oeis.org

1, 2, 7, 32, 185, 1310, 11067, 109148, 1234045, 15752858, 224169407, 3518636504, 60381131265, 1124390692886, 22577494959427, 486212633129300, 11177317486573445, 273173247028616594, 7072436847620016327, 193351544314753174736, 5565941751233499986185
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; `if`(n<=1, 1,
          add(binomial(n, k) *f(n-k), k=1..n))
        end:
    a:= n-> add(f(k)*f(n-k), k=0..n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 02 2009
  • Mathematica
    t[n_] := Sum[StirlingS2[n, k]*k!, {k, 0, n}]; Table[Sum[t[k]*t[n-k], {k, 0, n}], {n, 0, 20}] (* Jean-François Alcover, Apr 09 2014, after Emanuele Munarini *)
  • Maxima
    t(n):=sum(stirling2(n,k)*k!,k,0,n);
    makelist(sum(t(k)*t(n-k),k,0,n),n,0,20); /* Emanuele Munarini, Oct 02 2012 */
    
  • PARI
    a006957(n)=my(x='x+O('x^(n+2))); Vec((x-2*log(2-exp(x)))/(4-exp(x)))[n+1]*(n+1)! \\ Hugo Pfoertner, Dec 27 2024

Formula

a(n) ~ n! / (log(2))^(n+1). - Vaclav Kotesovec, Nov 08 2014
G.f.: (Sum_{j>=0} j!*x^j / Product_{k=1..j} (1 - k*x))^2. - Ilya Gutkovskiy, Apr 06 2019
a(n) = (n+1)! [x^(n+1)] (x-2*log(2-exp(x)))/(4-exp(x)). - Ira M. Gessel, Dec 26 2024

Extensions

More terms from Alois P. Heinz, Feb 02 2009

A217391 Partial sums of the squares of the ordered Bell numbers (number of preferential arrangements) A000670.

Original entry on oeis.org

1, 2, 11, 180, 5805, 298486, 22228975, 2258856824, 300194704049, 50529463186170, 10505093602625139, 2643441560563225468, 791779611505017309493, 278371498870260182630654, 113516551713466910954246903, 53143864598655784249290736512, 28309328562668956145157858372537
Offset: 0

Views

Author

Emanuele Munarini, Oct 02 2012

Keywords

Crossrefs

Partial sums of A122725.

Programs

  • Magma
    A000670:=func;
    [&+[A000670(k)^2: k in [0..n]]: n in [0..14]]; // Bruno Berselli, Oct 03 2012
    
  • Mathematica
    t[n_] := Sum[StirlingS2[n, k]k!, {k, 0, n}]; Table[Sum[t[k]^2, {k, 0, n}], {n, 0, 100}]
  • Maxima
    t(n):=sum(stirling2(n,k)*k!,k,0,n);
    makelist(sum(t(k)^2,k,0,n),n,0,40);
    
  • PARI
    for(n=0,30, print1(sum(k=0,n, (sum(j=0,k, j!*stirling(k,j,2)))^2), ", ")) \\ G. C. Greubel, Feb 07 2018

Formula

a(n) = Sum_{k=0..n} t(k)^2 where t = A000670 (ordered Bell numbers).
a(n) ~ (n!)^2 / (4 * (log(2))^(2*n+2)). - Vaclav Kotesovec, Nov 08 2014

A217392 Alternating sums of the squares of the ordered Bell numbers (number of preferential arrangements) A000670.

Original entry on oeis.org

1, 0, 9, 160, 5465, 287216, 21643273, 2214984576, 295720862649, 49933547619472, 10404630591819497, 2622531836368780832, 786513638108085303193, 276793205620647080017968, 112961387008976003691598281, 52917386659933341334644891328, 28203267311410367019573922744697
Offset: 0

Views

Author

Emanuele Munarini, Oct 02 2012

Keywords

Crossrefs

Programs

  • Magma
    A000670:=func;
    [&+[(-1)^(n-k)*A000670(k)^2: k in [0..n]]: n in [0..14]]; // Bruno Berselli, Oct 03 2012
    
  • Mathematica
    t[n_] := Sum[StirlingS2[n, k]k!, {k, 0, n}]; Table[Sum[(-1)^(n-k)t[k]^2, {k, 0, n}], {n, 0, 100}]
  • Maxima
    t(n):=sum(stirling2(n,k)*k!,k,0,n);
    makelist(sum((-1)^(n-k)*t(k)^2,k,0,n),n,0,40);
    
  • PARI
    for(n=0,30, print1(sum(k=0,n, (-1)^(n-k)*(sum(j=0,k, j!*stirling(k,j,2)))^2), ", ")) \\ G. C. Greubel, Feb 07 2018

Formula

a(n) = sum((-1)^(n-k)*t(k)^2, k=0..n), where t = A000670 (ordered Bell numbers).
a(n) ~ (n!)^2 / (4 * (log(2))^(2*n+2)). - Vaclav Kotesovec, Nov 08 2014
Showing 1-4 of 4 results.