cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217863 a(n) = phi(lcm(1,2,3,...,n)), where phi is Euler's totient function.

Original entry on oeis.org

1, 1, 2, 4, 16, 16, 96, 192, 576, 576, 5760, 5760, 69120, 69120, 69120, 138240, 2211840, 2211840, 39813120, 39813120, 39813120, 39813120, 875888640, 875888640, 4379443200, 4379443200, 13138329600, 13138329600, 367873228800, 367873228800, 11036196864000
Offset: 1

Views

Author

Joshua S.M. Weiner, Oct 13 2012

Keywords

Comments

This is a composition f(g(x)). g(x) = lcm(1...x) and f(x) = phi(x), Euler's totient function. The sequence generated is the number of prime congruence classes (prime spokes) for wheel factorization in mod g(x).
First column of A096180. - Eric Desbiaux, Apr 23 2013

Crossrefs

Cf. A000010 (Euler phi), A003418 (LCM), A072211, A173557.

Programs

  • Haskell
    a217863 = a000010 . a003418  -- Reinhard Zumkeller, Nov 24 2012
    
  • Maple
    with(numtheory): a:=n->phi(lcm(seq(m,m=1..n))): seq(a(n),n=1..40); # Muniru A Asiru, Feb 20 2019
  • Mathematica
    EulerPhi[Table[LCM @@ Range[n], {n, 35}]] (* T. D. Noe, Oct 16 2012 *)
  • PARI
    a(n) = eulerphi(lcm(vector(n, k, k))); \\ Michel Marcus, Aug 25 2015

Formula

a(n) = A000010(A003418(n)). - Omar E. Pol, Nov 25 2012
From Peter Bala, Feb 19 2019: (Start)
a(n) = Product_{k = 1..n} A072211(k).
With p denoting a prime, a(n) = ( Product_{p <= n} (p - 1) ) * ( Product_{p^2 <= n} p ) * ( Product_{p^3 <= n} p ) * ... . For example, a(16) = ((2-1)*(3-1)*(5-1)*(7-1)*(11-1)*(13-1)) * (2*3) * 2 * 2 = 138240. (End)