A217863 a(n) = phi(lcm(1,2,3,...,n)), where phi is Euler's totient function.
1, 1, 2, 4, 16, 16, 96, 192, 576, 576, 5760, 5760, 69120, 69120, 69120, 138240, 2211840, 2211840, 39813120, 39813120, 39813120, 39813120, 875888640, 875888640, 4379443200, 4379443200, 13138329600, 13138329600, 367873228800, 367873228800, 11036196864000
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a217863 = a000010 . a003418 -- Reinhard Zumkeller, Nov 24 2012
-
Maple
with(numtheory): a:=n->phi(lcm(seq(m,m=1..n))): seq(a(n),n=1..40); # Muniru A Asiru, Feb 20 2019
-
Mathematica
EulerPhi[Table[LCM @@ Range[n], {n, 35}]] (* T. D. Noe, Oct 16 2012 *)
-
PARI
a(n) = eulerphi(lcm(vector(n, k, k))); \\ Michel Marcus, Aug 25 2015
Formula
From Peter Bala, Feb 19 2019: (Start)
a(n) = Product_{k = 1..n} A072211(k).
With p denoting a prime, a(n) = ( Product_{p <= n} (p - 1) ) * ( Product_{p^2 <= n} p ) * ( Product_{p^3 <= n} p ) * ... . For example, a(16) = ((2-1)*(3-1)*(5-1)*(7-1)*(11-1)*(13-1)) * (2*3) * 2 * 2 = 138240. (End)
Comments