cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A219410 T(n,k)=Unmatched value maps: number of nXk binary arrays indicating the locations of corresponding elements not equal to any horizontal or antidiagonal neighbor in a random 0..2 nXk array.

Original entry on oeis.org

1, 2, 1, 4, 7, 1, 7, 28, 21, 1, 12, 98, 181, 65, 1, 21, 351, 1199, 1180, 200, 1, 37, 1261, 8173, 14737, 7687, 616, 1, 65, 4523, 57097, 193116, 181089, 50077, 1897, 1, 114, 16233, 398375, 2633596, 4560446, 2225293, 326233, 5842, 1, 200, 58268, 2773933
Offset: 1

Views

Author

R. H. Hardin Nov 19 2012

Keywords

Comments

Table starts
.1......2..........4............7.............12..............21
.1......7.........28...........98............351............1261
.1.....21........181.........1199...........8173...........57097
.1.....65.......1180........14737.........193116.........2633596
.1....200.......7687.......181089........4560446.......121641579
.1....616......50077......2225293......107701719......5618116265
.1...1897.....326233.....27345143.....2543481662....259468310384
.1...5842....2125270....336026564....60067211485..11983486642214
.1..17991...13845268...4129209727..1418553120783.553453107750115
.1..55405...90196219..50741147949.33500701298909
.1.170625..587591326.623524656508
.1.525456.3827916001

Examples

			Some solutions for n=3 k=4
..0..0..1..1....1..1..0..1....0..0..0..0....0..0..1..1....1..1..1..0
..1..1..0..0....1..0..0..0....1..0..0..0....1..0..0..0....0..0..0..1
..1..1..1..1....0..0..1..1....0..0..1..1....1..1..0..1....1..0..0..1
		

Crossrefs

Column 2 is A218836
Row 1 is A005251(n+2)

A220386 T(n,k)=Majority value maps: number of nXk binary arrays indicating the locations of corresponding elements equal to at least half of their horizontal and antidiagonal neighbors in a random 0..1 nXk array.

Original entry on oeis.org

1, 2, 1, 4, 7, 1, 7, 25, 21, 1, 12, 79, 136, 65, 1, 21, 278, 757, 753, 200, 1, 37, 966, 5114, 7462, 4160, 616, 1, 65, 3362, 33247, 96772, 73066, 22989, 1897, 1, 114, 11642, 211944, 1191846, 1829169, 715412, 127037, 5842, 1, 200, 40375, 1358599, 14300020
Offset: 1

Views

Author

R. H. Hardin Dec 13 2012

Keywords

Comments

Table starts
.1......2.........4...........7............12.............21..............37
.1......7........25..........79...........278............966............3362
.1.....21.......136.........757..........5114..........33247..........211944
.1.....65.......753........7462.........96772........1191846........14300020
.1....200......4160.......73066.......1829169.......42415575.......953142266
.1....616.....22989......715412......34521416.....1509240923.....63512364783
.1...1897....127037.....7003040.....651568437....53692543412...4230913273170
.1...5842....702009....68557435...12297040231..1910141303899.281832304026762
.1..17991...3879313...671141189..232084431547.67952729355483
.1..55405..21437148..6570141318.4380156648582
.1.170625.118462034.64318370539
.1.525456.654623158

Examples

			Some solutions for n=3 k=4
..0..0..1..0....1..1..1..0....1..1..1..1....1..1..0..0....1..1..1..1
..0..1..1..0....0..1..0..0....0..1..1..1....1..1..0..0....0..1..1..1
..0..1..0..0....1..0..0..1....1..1..0..1....1..1..0..0....0..0..0..0
		

Crossrefs

Column 2 is A218836
Row 1 is A005251(n+2)

A221035 T(n,k)=Majority value maps: number of nXk binary arrays indicating the locations of corresponding elements equal to at least half of their horizontal and antidiagonal neighbors in a random 0..2 nXk array.

Original entry on oeis.org

1, 2, 1, 4, 7, 1, 7, 33, 21, 1, 12, 119, 228, 65, 1, 21, 457, 1733, 1561, 200, 1, 37, 1710, 14277, 24485, 10648, 616, 1, 65, 6466, 110506, 419506, 345755, 72625, 1897, 1, 114, 24433, 870027, 6637755, 12239631, 4882030, 495329, 5842, 1, 200, 92196, 6717882
Offset: 1

Views

Author

R. H. Hardin Dec 29 2012

Keywords

Comments

Table starts
.1......2.........4...........7...........12............21............37
.1......7........33.........119..........457..........1710..........6466
.1.....21.......228........1733........14277........110506........870027
.1.....65......1561.......24485.......419506.......6637755.....106761517
.1....200.....10648......345755.....12239631.....393788081...12843452050
.1....616.....72625.....4882030....356411031...23287585899.1537391091350
.1...1897....495329....68933905..10373626389.1376083439034
.1...5842...3378333...973340015.301896920812
.1..17991..23041525.13743460075
.1..55405.157152036
.1.170625
.1

Examples

			Some solutions for n=3 k=4
..1..1..0..1....1..1..0..1....0..1..1..1....0..0..0..1....0..1..0..1
..1..0..1..0....1..0..1..0....1..1..0..1....1..0..0..0....1..1..1..0
..1..1..1..1....0..0..0..0....0..0..1..0....1..1..0..1....1..1..0..1
		

Crossrefs

Column 2 is A218836
Row 1 is A005251(n+2)

A232047 T(n,k)=Number of nXk 0..1 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

2, 2, 4, 4, 7, 8, 7, 15, 21, 16, 12, 34, 80, 65, 32, 21, 79, 318, 446, 200, 64, 37, 184, 1315, 3082, 2477, 616, 128, 65, 426, 5364, 22063, 29974, 13752, 1897, 256, 114, 984, 21680, 153562, 377676, 290672, 76375, 5842, 512, 200, 2274, 87452, 1060850, 4588174
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Table starts
....2.....2........4..........7...........12..............21................37
....4.....7.......15.........34...........79.............184...............426
....8....21.......80........318.........1315............5364.............21680
...16....65......446.......3082........22063..........153562...........1060850
...32...200.....2477......29974.......377676.........4588174..........55505057
...64...616....13752.....290672......6430408.......136134243........2882322121
..128..1897....76375....2821630....109609484......4041385884......149582129861
..256..5842...424115...27382537...1868028342....119990644449.....7766282047395
..512.17991..2355221..265752221..31836538191...3562337669985...403179428472169
.1024.55405.13079032.2579134666.542586883485.105762437152368.20931014633412316

Examples

			Some solutions for n=4 k=4
..0..0..0..1....0..0..0..1....1..0..0..0....0..0..0..0....1..1..0..0
..1..0..1..1....0..0..1..0....0..0..0..0....1..0..0..0....0..0..1..0
..0..0..0..1....0..1..0..0....0..1..0..0....1..1..1..0....0..1..0..1
..1..0..0..0....1..0..0..1....1..0..0..1....1..1..0..0....0..0..1..1
		

Crossrefs

Column 1 is A000079
Column 2 is A218836
Row 1 is A005251(n+2)

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +3*a(n-2) +a(n-3)
k=3: a(n) = 4*a(n-1) +9*a(n-2) -a(n-3) -6*a(n-4) for n>5
k=4: [order 8] for n>9
k=5: [order 14] for n>15
k=6: [order 24] for n>26
k=7: [order 44] for n>47
Empirical for row n:
n=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3) for n>4
n=2: a(n) = 4*a(n-1) -6*a(n-2) +7*a(n-3) -6*a(n-4) +3*a(n-5) -a(n-6) -a(n-7) for n>8
n=3: [order 15] for n>18
n=4: [order 33] for n>36
n=5: [order 78] for n>84

A297314 T(n,k)=Number of nXk 0..1 arrays with every 1 horizontally or antidiagonally adjacent to 1 or 2 neighboring 1s.

Original entry on oeis.org

1, 2, 1, 4, 7, 1, 7, 23, 21, 1, 12, 66, 117, 65, 1, 21, 207, 497, 609, 200, 1, 37, 654, 2577, 3808, 3159, 616, 1, 65, 2049, 13937, 35476, 29212, 16389, 1897, 1, 114, 6422, 72541, 340825, 484808, 223995, 85041, 5842, 1, 200, 20119, 375054, 2997197, 8273245
Offset: 1

Views

Author

R. H. Hardin, Dec 28 2017

Keywords

Comments

Table starts
.1.....2.......4.........7..........12............21..............37
.1.....7......23........66.........207...........654............2049
.1....21.....117.......497........2577.........13937...........72541
.1....65.....609......3808.......35476........340825.........2997197
.1...200....3159.....29212......484808.......8273245.......121339476
.1...616...16389....223995.....6623719.....200646607......4893232934
.1..1897...85041...1717882....90535227....4869858862....197589351469
.1..5842..441225..13174266..1237278512..118156684121...7976248015498
.1.17991.2289339.101033369.16909630099.2867120332406.322003901582689

Examples

			Some solutions for n=5 k=4
..0..1..1..1. .1..1..0..0. .1..1..1..0. .0..1..0..0. .0..0..1..0
..1..0..0..0. .0..0..0..1. .0..0..1..0. .1..1..1..1. .1..1..0..0
..0..1..0..1. .0..0..1..0. .0..1..1..0. .0..0..0..1. .0..0..0..1
..1..1..1..0. .0..0..1..0. .0..1..0..0. .0..0..1..1. .0..1..1..0
..0..0..0..0. .0..1..1..1. .0..1..1..1. .0..0..1..1. .1..0..1..1
		

Crossrefs

Column 2 is A218836.
Row 1 is A005251(n+2).

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1) +3*a(n-2) +a(n-3)
k=3: a(n) = 3*a(n-1) +11*a(n-2) +3*a(n-3) -6*a(n-4)
k=4: [order 8] for n>9
k=5: [order 12] for n>14
k=6: [order 22] for n>25
k=7: [order 35] for n>39
Empirical for row n:
n=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3)
n=2: [order 9]
n=3: [order 23]
n=4: [order 61]

A219421 T(n,k)=Unchanging value maps: number of nXk binary arrays indicating the locations of corresponding elements unequal to no horizontal or antidiagonal neighbor in a random 0..2 nXk array.

Original entry on oeis.org

1, 2, 1, 4, 7, 1, 7, 20, 21, 1, 12, 57, 93, 65, 1, 21, 160, 453, 436, 200, 1, 37, 454, 2121, 3617, 2043, 616, 1, 65, 1292, 9926, 28154, 28888, 9573, 1897, 1, 114, 3676, 46776, 218838, 372560, 230726, 44857, 5842, 1, 200, 10452, 220655, 1709703, 4775307
Offset: 1

Views

Author

R. H. Hardin Nov 19 2012

Keywords

Comments

Table starts
.1......2.........4...........7.............12................21
.1......7........20..........57............160...............454
.1.....21........93.........453...........2121..............9926
.1.....65.......436........3617..........28154............218838
.1....200......2043.......28888.........372560...........4775307
.1....616......9573......230726........4934366.........104434119
.1...1897.....44857.....1842766.......65352789........2284814260
.1...5842....210190....14717828......865523957.......49979133672
.1..17991....984904...117548611....11462977378.....1093274545336
.1..55405...4615043...938839259...151815415029....23915155162485
.1.170625..21625074..7498337380..2010639231109...523138192294728
.1.525456.101330329.59887849061.26628853182336.11443519356879492

Examples

			Some solutions for n=3 k=4
..1..0..0..1....0..0..1..0....1..1..0..0....1..1..0..0....1..0..0..1
..0..1..1..1....0..0..0..0....0..0..1..1....0..0..0..0....1..0..0..0
..1..1..1..1....1..0..1..1....0..0..0..0....0..0..0..0....1..0..0..0
		

Crossrefs

Column 2 is A218836
Column 3 is A218837
Column 4 is A218838
Row 1 is A005251(n+2)

A221499 T(n,k)=Majority value maps: number of nXk binary arrays indicating the locations of corresponding elements equal to at least half of their horizontal and antidiagonal neighbors in a random 0..3 nXk array.

Original entry on oeis.org

1, 2, 1, 4, 7, 1, 7, 33, 21, 1, 12, 119, 228, 65, 1, 21, 457, 1733, 1561, 200, 1, 37, 1710, 14297, 24485, 10648, 616, 1, 65, 6466, 111042, 420022, 345755, 72625, 1897, 1, 114, 24433, 874106, 6665056, 12253352, 4882030, 495329, 5842, 1, 200, 92196, 6765307
Offset: 1

Views

Author

R. H. Hardin Jan 18 2013

Keywords

Comments

Table starts
.1......2.........4...........7...........12............21............37
.1......7........33.........119..........457..........1710..........6466
.1.....21.......228........1733........14297........111042........874106
.1.....65......1561.......24485.......420022.......6665056.....107190767
.1....200.....10648......345755.....12253352.....395300442...12890161742
.1....616.....72625.....4882030....356799776...23379869304.1542965772979
.1...1897....495329....68933905..10385011060.1381866811158
.1...5842...3378333...973340015.302233979821
.1..17991..23041525.13743460075
.1..55405.157152036
.1.170625
.1

Examples

			Some solutions for n=3 k=4
..0..0..1..1....0..0..0..0....1..1..1..1....0..0..0..0....1..1..1..0
..1..1..0..1....1..0..0..1....1..0..1..0....0..0..1..1....0..1..1..1
..0..0..1..1....1..0..0..1....1..0..0..1....1..1..1..1....0..0..1..1
		

Crossrefs

Column 2 is A218836
Column 3 is A221030
Column 4 is A221031
Row 1 is A005251(n+2)
Row 2 is A221036

A097472 Number of different candle trees having a total of m edges.

Original entry on oeis.org

1, 3, 10, 31, 96, 296, 912, 2809, 8651, 26642, 82047, 252672, 778128, 2396320, 7379697, 22726483, 69988378, 215535903, 663763424, 2044122936, 6295072048, 19386276329, 59701891739, 183857684514, 566207320575, 1743689586432
Offset: 0

Views

Author

Alexander Malkis, Sep 18 2004

Keywords

Comments

A candle tree is a graph on the plane square lattice Z X Z whose edges have length one with the following properties: (a) It contains a line segment ("trunk") of length from 0 to m on the vertical axis, its lowest node is at the origin. (b) It contains horizontal line segments ("branches"); each of them intersects the trunk. (c) Each branch is allowed to have "candles", which are vertical edges of length 1, whose lower node is on a branch.
Row sums of triangle in A238241. - Philippe Deléham, Feb 21 2014

Crossrefs

Bisection of A060945 and |A077930|.

Programs

  • Mathematica
    CoefficientList[Series[1/(x^4+2x^3-x^2-3x+1),{x,0,30}],x] (* or *) LinearRecurrence[{3,1,-2,-1},{1,3,10,31},30] (* Harvey P. Dale, Jun 14 2011 *)
  • Maxima
    a(n):=sum(sum(binomial(k,n-m-k+1)*binomial(k+2*m-1,2*m-1),k,1,n-m+1),m,1,n)+1; /* Vladimir Kruchinin, May 12 2011 */
    
  • PARI
    a(n)=sum(m=1,n,sum(k=1,n-m+1,binomial(k,n-m-k+1)*binomial(k+2*m-1,2*m-1))) \\ Charles R Greathouse IV, Jun 17 2013

Formula

a(n) = Sum_{s, d, k>=0 with s+d+k=m} binomial(s+2d+1, s)*binomial(s, k);
generating function = 1/((1-x)*(1-2*x-3*x^2-x^3)).
a(n) = 3*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4);
a(n) = 1 + Sum_{m=1..n} Sum_{k=1..n-m+1} binomial(k, n-m-k+1)*binomial(k+2*m-1,2*m-1). - Vladimir Kruchinin, May 12 2011
a(n) = Sum_{k=0..n} A238241(n,k). - Philippe Deléham, Feb 21 2014
a(n) - a(n-1) = A218836(n). - R. J. Mathar, Jun 17 2020

A368205 a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3), with a(0)=1, a(1)=3 and a(2)=7.

Original entry on oeis.org

1, 3, 7, 14, 25, 40, 56, 63, 37, -71, -350, -945, -2064, -3952, -6783, -10381, -13625, -13330, -2359, 33208, 117672, 288959, 598325, 1099385, 1812546, 2640543, 3197152, 2497824, -1541375, -12816925, -37865849, -86422322, -170718343, -301444536, -476474600, -655816385, -713055419, -351058887, 1028750562, 4501424879, 11797832400, 25361896880, 47988600961
Offset: 0

Views

Author

Raul Prisacariu, Dec 18 2023

Keywords

Comments

Whittaker's Root Series Formula is applied to the polynomial equation -1+2x+3x^2+x^3. The following infinite series involving the Plastic Ratio (rho) is obtained: rho - 1 = 1/2 - 3/(2*7) + 7/(7*21) - 14/(21*65) + 25/(65*200) - 40/(200*616) + 56/(616*1897) - ...
The terms of the sequence appear in the numerators of the infinite sequence (with alternating signs). The denominators of the sequence are formed by multiplying consecutive terms from the sequence A218836.

Examples

			a(0) = 1,
a(1) = 3*a(0) = 3*1 = 3,
a(2) = 3*a(1) - 2*a(0) = 3*3 - 2*1 = 7,
a(3) = 3*a(2) - 2*a(1) - a(0) = 3*7 - 2*3 - 1 = 14.
		

Crossrefs

Cf. A218836 (denominator), A060006.

Programs

  • Maple
    a:=proc(n) local c1,c2,c3;
     option remember;
    c1:=3; c2:=2; c3:=1;
    if n=0 then 1
    elif n=1 then 3
    elif n=2 then 7
    else c1*a(n-1)-c2*a(n-2)-c3*a(n-3); fi;
    end; # N. J. A. Sloane, Dec 31 2023
    [seq(a(n),n=0..30)];

Formula

a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3).
a(n) = determinant of the n X n Toeplitz Matrix((3,2,-1,0,0,...,0),(3,1,0,0,0,...,0)).
Showing 1-9 of 9 results.