cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A219609 Half of first differences of A219608.

Original entry on oeis.org

1, 2, 1, 3, 2, 3, 3, 1, 3, 6, 3, 3, 2, 3, 3, 9, 3, 6, 3, 3, 1, 3, 6, 3, 3, 18, 3, 3, 9, 3, 6, 3, 3, 2, 3, 3, 9, 3, 6, 3, 3, 33, 3, 6, 3, 3, 18, 3, 3, 9, 3, 6, 3, 3, 1, 3, 6, 3, 3, 18, 3, 3, 9, 3, 6, 3, 3, 66, 3, 3, 9, 3, 6, 3, 3, 33, 3, 6, 3, 3, 18, 3, 3, 9
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 26 2012

Keywords

Comments

a(n) = (A219608(n+1) - A219608(n)) / 2.

Programs

  • Haskell
    a219609 n = a219609_list !! (n-1)
    a219609_list = map (`div` 2) $ zipWith (-) (tail a219608_list) a219608_list

A026351 a(n) = floor(n*phi) + 1, where phi = (1+sqrt(5))/2.

Original entry on oeis.org

1, 2, 4, 5, 7, 9, 10, 12, 13, 15, 17, 18, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 38, 39, 41, 43, 44, 46, 47, 49, 51, 52, 54, 56, 57, 59, 60, 62, 64, 65, 67, 68, 70, 72, 73, 75, 77, 78, 80, 81, 83, 85, 86, 88, 89, 91, 93, 94, 96, 98, 99
Offset: 0

Views

Author

Keywords

Comments

a(n)=least k such that s(k)=n, where s=A026350.
a(n)=position of n-th 1 in A096270.
From Wolfdieter Lang, Jun 27 2011: (Start)
a(n) = A(n)+1, with Wythoff sequence A(n)=A000201(n), n>=1, and A(0)=0.
a(n) = -floor(-n*phi). Recall that floor(-x) = -(floor(x)+1) if x is not integer and -floor(x) otherwise.
An exhaustive and disjoint decomposition of the integers is given by the following two Wythoff sequences A' and B: A'(0):=-1 (not 0), A'(-n):=-a(n)=-(A(n)+1), n>=1, A'(n) = A(n), n>=1, and B(-n):=-(B(n)+1)= -A026352(n), n>=1, with B(n)=A001950(n), n>=1, and B(0)=0.
(End)
Where odd terms in A060142 occur: A060142(a(n)) = A219608(n). - Reinhard Zumkeller, Nov 26 2012

Crossrefs

Essentially same as A004956. Cf. A000201.
Complement of A026352.
Cf. A283733 (partial sums).

Programs

  • Haskell
    import Data.List (findIndices)
    a026351 n = a026351_list !! n
    a026351_list = findIndices odd a060142_list
    -- Reinhard Zumkeller, Nov 26 2012
    
  • Mathematica
    Table[Floor[n*GoldenRatio] + 1, {n, 0, 100}] (* T. D. Noe, Apr 15 2011 *)
  • Python
    from math import isqrt
    def A026351(n): return (n+isqrt(5*n**2)>>1)+1 # Chai Wah Wu, Aug 17 2022

A060142 Ordered set S defined by these rules: 0 is in S and if x is in S then 2x+1 and 4x are in S.

Original entry on oeis.org

0, 1, 3, 4, 7, 9, 12, 15, 16, 19, 25, 28, 31, 33, 36, 39, 48, 51, 57, 60, 63, 64, 67, 73, 76, 79, 97, 100, 103, 112, 115, 121, 124, 127, 129, 132, 135, 144, 147, 153, 156, 159, 192, 195, 201, 204, 207, 225, 228, 231, 240, 243, 249, 252, 255, 256, 259, 265, 268, 271
Offset: 0

Views

Author

Clark Kimberling, Mar 05 2001

Keywords

Comments

After expelling 0 and 1, the numbers 4x occupy same positions in S that 1 occupies in the infinite Fibonacci word (A003849).
a(A026351(n)) = A219608(n); a(A004957(n)) = 4 * a(n). - Reinhard Zumkeller, Nov 26 2012
Apart from the initial term, this lists the indices of the 1's in A086747. - N. J. A. Sloane, Dec 05 2019
From Gus Wiseman, Jun 10 2020: (Start)
Numbers k such that the k-th composition in standard order has all odd parts, or numbers k such that A124758(k) is odd. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. For example, the sequence of all compositions into odd parts begins:
0: () 57: (1,1,3,1) 135: (5,1,1,1)
1: (1) 60: (1,1,1,3) 144: (3,5)
3: (1,1) 63: (1,1,1,1,1,1) 147: (3,3,1,1)
4: (3) 64: (7) 153: (3,1,3,1)
7: (1,1,1) 67: (5,1,1) 156: (3,1,1,3)
9: (3,1) 73: (3,3,1) 159: (3,1,1,1,1,1)
12: (1,3) 76: (3,1,3) 192: (1,7)
15: (1,1,1,1) 79: (3,1,1,1,1) 195: (1,5,1,1)
16: (5) 97: (1,5,1) 201: (1,3,3,1)
19: (3,1,1) 100: (1,3,3) 204: (1,3,1,3)
25: (1,3,1) 103: (1,3,1,1,1) 207: (1,3,1,1,1,1)
28: (1,1,3) 112: (1,1,5) 225: (1,1,5,1)
31: (1,1,1,1,1) 115: (1,1,3,1,1) 228: (1,1,3,3)
33: (5,1) 121: (1,1,1,3,1) 231: (1,1,3,1,1,1)
36: (3,3) 124: (1,1,1,1,3) 240: (1,1,1,5)
39: (3,1,1,1) 127: (1,1,1,1,1,1,1) 243: (1,1,1,3,1,1)
48: (1,5) 129: (7,1) 249: (1,1,1,1,3,1)
51: (1,3,1,1) 132: (5,3) 252: (1,1,1,1,1,3)
(End)
Numbers whose binary representation has the property that every run of consecutive 0's has even length. - Harry Richman, Jan 31 2024

Examples

			From _Harry Richman_, Jan 31 2024: (Start)
In the following, dots are used for zeros in the binary representation:
   n  binary(a(n))  a(n)
   0:    .......     0
   1:    ......1     1
   2:    .....11     3
   3:    ....1..     4
   4:    ....111     7
   5:    ...1..1     9
   6:    ...11..    12
   7:    ...1111    15
   8:    ..1....    16
   9:    ..1..11    19
  10:    ..11..1    25
  11:    ..111..    28
  12:    ..11111    31
  13:    .1....1    33
  14:    .1..1..    36
  15:    .1..111    39
  16:    .11....    48
  17:    .11..11    51
  18:    .111..1    57
  19:    .1111..    60
  20:    .111111    63
  21:    1......    64
  22:    1....11    67
(End)
		

Crossrefs

Cf. A003714 (no consecutive 1's in binary expansion).
Odd partitions are counted by A000009.
Numbers with an odd number of 1's in binary expansion are A000069.
Numbers whose binary expansion has odd length are A053738.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Compositions without odd parts are A062880.
- Sum is A070939.
- Product is A124758.
- Strict compositions are A233564.
- Heinz number is A333219.
- Number of distinct parts is A334028.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a060142 n = a060142_list !! n
    a060142_list = 0 : f (singleton 1) where
       f s = x : f (insert (4 * x) $ insert (2 * x + 1) s') where
           (x, s') = deleteFindMin s
    -- Reinhard Zumkeller, Nov 26 2012
    
  • Mathematica
    Take[Nest[Union[Flatten[# /. {{i_Integer -> i}, {i_Integer -> 2 i + 1}, {i_Integer -> 4 i}}]] &, {1}, 5], 32]  (* Or *)
    Select[Range[124], FreeQ[Length /@ Select[Split[IntegerDigits[#, 2]], First[#] == 0 &], ?OddQ] &] (* _Birkas Gyorgy, May 29 2012 *)
  • PARI
    is(n)=if(n<3, n<2, if(n%2,is(n\2),n%4==0 && is(n/4))) \\ Charles R Greathouse IV, Oct 21 2013

Extensions

Corrected by T. D. Noe, Nov 01 2006
Definition simplified by Charles R Greathouse IV, Oct 21 2013

A375456 Expansion of g.f. A(x) satisfying x = A( A(x) - 2*A(x)^2*A'(x) ).

Original entry on oeis.org

1, 1, 5, 40, 414, 5096, 71465, 1113432, 18964415, 349252420, 6899717360, 145360352592, 3250782038728, 76887080836140, 1917401350590001, 50284361717695424, 1383636099826635216, 39865319955874291412, 1200467734347938040895, 37718141663144558046536, 1234556743772762830508484
Offset: 1

Views

Author

Paul D. Hanna, Sep 06 2024

Keywords

Comments

It appears that a(A219608(n)) is odd for n >= 1, and that the only other odd term is a(2) = 1.

Examples

			G.f.: A(x) = x + x^2 + 5*x^3 + 40*x^4 + 414*x^5 + 5096*x^6 + 71465*x^7 + 1113432*x^8 + 18964415*x^9 + 349252420*x^10 + ...
where x = A( A(x) - 2*A(x)^2 * A'(x) ).
RELATED SERIES.
Let R(x) be the series reversion of A(x) so that R(A(x)) = x, then
R(x) = x - x^2 - 3*x^3 - 20*x^4 - 190*x^5 - 2240*x^6 - 30759*x^7 - 475116*x^8 - 8081145*x^9 - 149243380*x^10 + ...
where R(x) = A(x) - 2*A(x)^2 * A'(x).
A(x)^2 = x^2 + 2*x^3 + 11*x^4 + 90*x^5 + 933*x^6 + 11420*x^7 + 158862*x^8 + 2453874*x^9 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[0,1],Ax=x); for(i=1,n, A=concat(A,0); Ax=Ser(A);
    A[#A] = -polcoeff( subst(Ax,x, Ax - 2*Ax^2*Ax')/2, #A-1); ); H=Ax; A[n+1]}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) x = A( A(x) - 2*A(x)^2 * A'(x) ).
(2) A(A(x)) = x + 2*A(A(x))^2 * A'(A(x)).
(3) R(R(x)) = x - 2*x^2 * A'(R(x)), where A(R(x)) = x.
a(n) ~ c * d^n * n! * n^alpha, where d = 1.3534821142256737694364485294..., alpha = 2.7625501039589..., c = 0.0101323266748276... - Vaclav Kotesovec, Sep 07 2024

A307096 Positive integers m such that for any positive integer k the last k bits of the binary expansion of m is not a multiple of 3.

Original entry on oeis.org

1, 5, 13, 17, 29, 37, 49, 61, 65, 77, 101, 113, 125, 133, 145, 157, 193, 205, 229, 241, 253, 257, 269, 293, 305, 317, 389, 401, 413, 449, 461, 485, 497, 509, 517, 529, 541, 577, 589, 613, 625, 637, 769, 781, 805, 817, 829, 901, 913, 925, 961, 973, 997, 1009
Offset: 1

Views

Author

John Rickert, Mar 24 2019

Keywords

Comments

The number of terms less than 2^n is the n-th Fibonacci number F(n), A000045.
The number of terms between 2^(n-1) and 2^n in the sequence is the Fibonacci number F(n-2), A000045.
If 2^(n-1) <= x < 2^n, then x is in the sequence if and only if x is not divisible by 3 and x - 2^(n-1) is in the sequence. - Robert Israel, Apr 25 2019

Examples

			29 is 11101_2 and none of 11101_2, 1101_2, 101_2, 1_2 are divisible by 3.
		

Crossrefs

Programs

  • Maple
    f := n-> if(n != 0, add(2^(k-1)*`if`((n mod 2^k) mod 3 = 0, 1, 0), k = 1 .. ceil(log(n)/log(2))), 0);
    ker := []; for n from 1 to 1024 do if f(n) = 0 then ker := [op(ker), n] end if end do; ker;
    # Alternative:
    A1:= {1}: A2:= {}:
    for d from 1 to 12 do
      if d::odd then A1:= A1 union map(`+`,A2,2^d)
      else A2:= A2 union map(`+`,A1,2^d)
      fi
    od:
    sort(convert(A1 union A2,list)); # Robert Israel, Apr 25 2019
  • Mathematica
    Select[Range[10^3], Function[s, NoneTrue[Array[FromDigits[Take[s, -#], 2] &, Length@ s], Mod[#, 3] == 0 &]]@ IntegerDigits[#, 2] &] (* Michael De Vlieger, Mar 24 2019 *)
  • PARI
    isok(n) = {if (n % 3, my(b=binary(n)); for (k=1, #b-1, b[k] = 0; if ((fromdigits(b, 2) % 3) == 0, return (0));); return (1);); return (0);} \\ Michel Marcus, Apr 24 2019

Formula

(a(n)+1)/2 = A219608(n), the n-th odd term in A060142.
Showing 1-5 of 5 results.