cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A092553 Decimal expansion of 1/e^2.

Original entry on oeis.org

1, 3, 5, 3, 3, 5, 2, 8, 3, 2, 3, 6, 6, 1, 2, 6, 9, 1, 8, 9, 3, 9, 9, 9, 4, 9, 4, 9, 7, 2, 4, 8, 4, 4, 0, 3, 4, 0, 7, 6, 3, 1, 5, 4, 5, 9, 0, 9, 5, 7, 5, 8, 8, 1, 4, 6, 8, 1, 5, 8, 8, 7, 2, 6, 5, 4, 0, 7, 3, 3, 7, 4, 1, 0, 1, 4, 8, 7, 6, 8, 9, 9, 3, 7, 0, 9, 8, 1, 2, 2, 4, 9, 0, 6, 5, 7, 0, 4, 8, 7, 5, 5, 0, 7, 7
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 09 2004

Keywords

Comments

Consider a substrate (such as polyvinyl alcohol or in forming the polymer of methyl vinyl ketone) in a "1,3 configuration" in which substituents branching off the substrate can irreversibly join with neighboring substituents unless the neighbor is already joined to its other neighbor. Then this constant is the fraction of joined substituents on an infinite substrate.
This also applies to reversible reactions when the rate of forward reaction is much faster than that of backward reaction; see Flory p. 1518 footnote 5. This had "satisfactory accord" with his experimental data using methyl vinyl ketone polymer for which the experimentally-obtained percentage was 0.15.
(A 1,k configuration is a substituent branching off a carbon atom, k-2 intermediate carbon atoms, and substituent branching off a carbon atom.) - Charles R Greathouse IV, Nov 30 2012
Also the probability, as n increases without bound, that a permutation of length n is simple: no intervals of length 1 < k < n (an interval of a permutation s is a set of contiguous numbers which in s have consecutive indices). - Charles R Greathouse IV, May 14 2014

Examples

			0.1353352832366...
		

Crossrefs

Programs

Formula

From Peter Bala, Oct 27 2019: (Start)
1/e^2 = Sum_{k >= 0} (-2)^k/k!.
This is the case n = 0 of the following series acceleration formulas:
1/e^2 = n!*2^n*Sum_{k >= 0} (-2)^k/(k!*R(n,k)*R(n,k+1)), n = 0,1,2,..., where R(n,x) = Sum_{k = 0..n} (-1)^k*binomial(n,k)*k!*2^(n-k)*binomial(-x,k) are the (unsigned) row polynomials of A137346. Cf. A094816. (End)

A307131 Numerator of the expected fraction of occupied places on n-length lattice randomly filled with 2-length segments.

Original entry on oeis.org

1, 2, 5, 4, 37, 52, 349, 338, 11873, 14554, 157567, 466498, 11994551, 41582906, 618626159, 614191052, 7545655031, 92853583996, 1755370057489, 8737266957604, 365468962351379, 2002633668589496, 45904893141293831
Offset: 1

Views

Author

Philipp O. Tsvetkov, Mar 26 2019

Keywords

Comments

The limit of expected fraction of occupied places on n-length lattice randomly filled with 2-length segments at n tends to infinity is equal to 1-1/e^2 (see A219863).

Examples

			0, 1, 2/3, 5/6, 4/5, 37/45, 52/63, 349/420, 338/405, 11873/14175, ...
		

Crossrefs

Cf. A219863, A231580, A307132 (denominators).

Programs

  • Mathematica
    RecurrenceTable[{f[n] == (2 + 2 (n - 2) f[n - 2] + (n - 1) (n - 2) f[n - 1])/(n (n - 1)),f[0] == 0, f[1] == 0}, f, {n, 2, 100}] // Numerator

Formula

Numerator of f(n), where f(0)=0; f(1)=0 and f(n) = (2 + 2(n-2)f(n-2) + (n-1)(n-2)f(n-1))/(n(n-1)) for n>1.

A307132 Denominator of the expected fraction of occupied places on n-length lattice randomly filled with 2-length segments.

Original entry on oeis.org

1, 3, 6, 5, 45, 63, 420, 405, 14175, 17325, 187110, 552825, 14189175, 49116375, 729729000, 723647925, 8881133625, 109185701625, 2062396586250, 10257709336875, 428772250281375, 2348038513445625, 53791427762572500, 160789593855515625, 16025362854266390625
Offset: 1

Views

Author

Philipp O. Tsvetkov, Mar 26 2019

Keywords

Comments

The limit of expected fraction of occupied places on n-length lattice randomly filled with 2-length segments at n tends to infinity is equal to 1-1/e^2 (see A219863).

Examples

			0, 1, 2/3, 5/6, 4/5, 37/45, 52/63, 349/420, 338/405, 11873/14175, ...
		

Crossrefs

Cf. A219863, A231580, A307131 (numerators).

Programs

  • Mathematica
    RecurrenceTable[{f[n] == (2 + 2 (n - 2) f[n - 2] + (n - 1) (n - 2) f[n - 1])/(n (n - 1)), f[0] == 0, f[1] == 0}, f, {n, 2, 100}] // Denominator

Formula

Denominator of f(n), where f(0)=0; f(1)=0 and f(n) = (2 + 2(n-2)f(n-2) + (n-1)(n-2)f(n-1))/(n(n-1)) for n>1.

A013301 E.g.f.: arctanh(arctanh(x)-log(x+1)).

Original entry on oeis.org

0, 1, 6, 150, 7560, 650160, 84823200, 15617281680, 3855823171200, 1229340262550400, 491641405006752000, 241000527467642342400, 142107676844443620710400, 99236357585615999548800000
Offset: 0

Views

Author

Patrick Demichel (patrick.demichel(AT)hp.com)

Keywords

Examples

			1/2!*x^2 + 6/4!*x^4 + 150/6!*x^6 + 7560/8!*x^8 + ...
		

Crossrefs

Cf. A219863.

Programs

  • Mathematica
    nn = 20; Table[(CoefficientList[Series[ArcTanh[ArcTanh[x] - Log[1 + x]], {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* Vaclav Kotesovec, Feb 05 2015 *)

Formula

a(n) ~ (2*n-1)! / (1-exp(-2))^n. - Vaclav Kotesovec, Feb 05 2015

Extensions

Definition clarified by Vaclav Kotesovec, Feb 05 2015
Prepended missing a(0)=0 from Vaclav Kotesovec, Feb 05 2015

A307154 Decimal expansion of the fraction of occupied places on an infinite lattice cover with 3-length segments.

Original entry on oeis.org

8, 2, 3, 6, 5, 2, 9, 6, 3, 1, 7, 7, 3, 3, 8, 3, 3, 6, 9, 0, 0, 6, 7, 1, 8, 7, 7, 8, 1, 1, 6, 4, 7, 8, 8, 7, 2, 1, 3, 9, 2, 3, 6, 6, 2, 0, 5, 3, 9, 2, 9, 8, 6, 8, 0, 9, 1, 4, 3, 7, 2, 3, 5, 0, 0, 7, 1, 8, 2, 2, 0, 1, 8, 0, 9, 8, 1, 2, 0, 0, 7, 9, 0, 9, 0, 5, 5, 8, 9, 2, 6, 4, 8, 7, 4, 0, 3, 0, 3, 3, 7, 1, 9, 6, 3, 8, 5, 4, 5, 9, 2, 8, 8, 9, 7, 9, 3, 3, 4, 2, 4, 8, 8, 7, 7, 2, 1, 2, 7, 1, 9, 6
Offset: 0

Views

Author

Philipp O. Tsvetkov, Mar 27 2019

Keywords

Comments

Solution of the discrete parking problem when infinite lattice randomly filled with 3-length segments.
Solution of the discrete parking problem when infinite lattice randomly filled with 2-length segments is equal to 1-1/e^2 (see A219863).
Also, the limit of a(n) = (3 + 2*(n-3)*a(n-3) + (n-1)*(n-3)*a(n-1))/(n*(n-2)); a(0) = 0; a(1) = 0; a(2) = 0 as n tends to infinity.
If the length of the segments that randomly cover infinite lattice tends to infinity, then the fraction of occupied places is equal to Rényi's parking constant (see A050996).

Examples

			0.8236529631773383369006718778116478872139236620539298680914372350071822...
		

Crossrefs

Programs

  • Maple
    evalf(3*sqrt(Pi)*(erfi(2)-erfi(1))/(2*exp(4)), 120) # Vaclav Kotesovec, Mar 28 2019
  • Mathematica
    N[-((3 DawsonF[1])/E^3) + 3 DawsonF[2], 200] // RealDigits
  • PARI
    -imag(3*sqrt(Pi)*(erfc(2*I) - erfc(1*I)) / (2*exp(4))) \\ Michel Marcus, May 10 2019

Formula

Equals 3*(Dawson(2) - Dawson(1)/e^3).
Equals 3*sqrt(Pi)*(erfi(2) - erfi(1)) / (2*exp(4)).

A307184 Decimal expansion of the fraction of occupied places on an infinite lattice cover with 4-length segments.

Original entry on oeis.org

8, 0, 3, 8, 9, 3, 4, 7, 9, 9, 1, 5, 3, 7, 6, 9, 7, 2, 6, 6, 6, 2, 9, 7, 4, 1, 9, 5, 0, 3, 2, 1, 3, 4, 2, 0, 5, 4, 6, 8, 7, 9, 1, 6, 4, 8, 5, 7, 7, 0, 8, 3, 5, 9, 2, 3, 9, 7, 2, 9, 9, 3, 2, 8, 0, 7, 0, 9, 4, 5, 6, 0, 9, 5, 0, 7, 6, 0, 3, 6, 1, 5
Offset: 0

Views

Author

Philipp O. Tsvetkov, Mar 28 2019

Keywords

Comments

The solution of the discrete parking problem when infinite lattice randomly filled with L-length segments at L=4.
At L=3 it is equal to 3*(Dawson(2) - Dawson(1)/e^3) (see A307154).
At L=2 it is equal to 1-1/e^2 (see A219863).
The general solution of the discrete parking problem when infinite lattice randomly filled with L-length segments is equal to L*e(-2H(L-1))*Integral_{x=0..1} e^(2*(t + t^2/2 + t^3/3 + ... + t^(L-1)/(L-1))) dx, where H(L) is harmonic number.
Also, the limit of the following recurrence as n tends to infinity: a(n) = (4 + 2(n-4)*a(n-4) + (n-1)*(n-4)*a(n-1))/(n*(n-3)); a(0) = 0; a(1) = 0; a(2) = 0; a(3) = 0.
If L tends to infinity, then the fraction of occupied places is equal to Rényi's parking constant (see A050996).

Examples

			0.80389347991537697266629741950321342054687916485770835923972993280709456095...
		

Crossrefs

Programs

  • Maple
    evalf(Integrate(4*exp(2*(t + t^2/2 + t^3/3) - 11/3), t= 0..1), 120); # Vaclav Kotesovec, Mar 28 2019
  • Mathematica
    RealDigits[ N[(4*Integrate[E^(2*(t + t^2/2 + t^3/3)), {t, 0, 1}])/E^(11/3), 200]][[1]]
  • PARI
    intnum(t=0, 1, 4*exp(2*(t + t^2/2 + t^3/3) - 11/3)) \\ Michel Marcus, May 10 2019

Formula

4*Integral_{x=0..1} e^(2*(t + t^2/2 + t^3/3)) dx / e^(11/3).
Showing 1-6 of 6 results.