A052980
Expansion of (1 - x)/(1 - 2*x - x^3).
Original entry on oeis.org
1, 1, 2, 5, 11, 24, 53, 117, 258, 569, 1255, 2768, 6105, 13465, 29698, 65501, 144467, 318632, 702765, 1549997, 3418626, 7540017, 16630031, 36678688, 80897393, 178424817, 393528322, 867954037, 1914332891, 4222194104, 9312342245, 20539017381, 45300228866
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Kassie Archer and Noel Bourne, Pattern avoidance in compositions and powers of permutations, arXiv:2505.05218 [math.CO], 2025. See p. 4.
- Robert Brignall, Nik Ruškuc, and Vincent Vatter, Simple permutations: decidability and unavoidable substructures, Theoretical Computer Science 391 (2008), 150-163.
- Greg Dresden and Michael Tulskikh, Tilings of 2 X n boards with dominos and L-shaped trominos, Washington & Lee University (2021).
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1053
- Djamila Oudrar, Sur l'énumération de structures discrètes, une approche par la théorie des relations, Thesis (in French), arXiv:1604.05839 [math.CO], 2016.
- Djamila Oudrar and Maurice Pouzet, Profile and hereditary classes of ordered relational structures, arXiv preprint arXiv:1409.1108 [math.CO], 2014 [The first version of this document erroneously gives the A-number as A005298]
- Vincent Vatter, Small permutation classes, arXiv:0712.4006 [math.CO], 2007-2016.
- Index entries for linear recurrences with constant coefficients, signature (2,0,1).
-
I:=[1,1,2]; [n le 3 select I[n] else 2*Self(n-1)+Self(n-3): n in [1..40]];
-
R:=PowerSeriesRing(Integers(), 32); Coefficients(R!( (1 - x)/(1 - 2*x - x^3))); // Marius A. Burtea, Feb 14 2020
-
spec := [S,{S=Sequence(Prod(Union(Prod(Z,Z,Z),Z),Sequence(Z)))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
-
CoefficientList[Series[(1 - x)/(1 - 2 x - x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 05 2014 *)
-
Vec((1-x)/(1-2*x-x^3)+O(x^99)) \\ Charles R Greathouse IV, Nov 20 2011
A219866
Number A(n,k) of tilings of a k X n rectangle using dominoes and straight (3 X 1) trominoes; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 4, 4, 1, 1, 1, 2, 7, 14, 7, 2, 1, 1, 2, 15, 41, 41, 15, 2, 1, 1, 3, 30, 143, 184, 143, 30, 3, 1, 1, 4, 60, 472, 1069, 1069, 472, 60, 4, 1, 1, 5, 123, 1562, 5624, 9612, 5624, 1562, 123, 5, 1
Offset: 0
A(2,3) = A(3,2) = 4, because there are 4 tilings of a 3 X 2 rectangle using dominoes and straight (3 X 1) trominoes:
.___. .___. .___. .___.
| | | |___| | | | |___|
| | | |___| |_|_| | | |
|_|_| |___| |___| |_|_|
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, 1, 1, 1, 2, 2, 3, ...
1, 1, 2, 4, 7, 15, 30, 60, ...
1, 1, 4, 14, 41, 143, 472, 1562, ...
1, 1, 7, 41, 184, 1069, 5624, 29907, ...
1, 2, 15, 143, 1069, 9612, 82634, 707903, ...
1, 2, 30, 472, 5624, 82634, 1143834, 15859323, ...
1, 3, 60, 1562, 29907, 707903, 15859323, 354859954, ...
Columns (or rows) k=0-10 give:
A000012,
A000931(n+3),
A129682,
A219867,
A219862,
A219868,
A219869,
A219870,
A219871,
A219872,
A219873.
-
b:= proc(n, l) option remember; local k, t;
if max(l[])>n then 0 elif n=0 or l=[] then 1
elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
else for k do if l[k]=0 then break fi od;
b(n, subsop(k=3, l))+ b(n, subsop(k=2, l))+
`if`(k `if`(n>=k, b(n, [0$k]), b(k, [0$n])):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
b[n_, l_] := b[n, l] = Module[{k, t}, If [Max[l] > n, 0, If[ n == 0 || l == {}, 1, If[Min[l] > 0, t = Min[l]; b[n-t, l-t], k = Position[l, 0, 1][[1, 1]]; b[n, ReplacePart[l, k -> 3]] + b[n, ReplacePart[l, k -> 2]] + If[k < Length[l] && l[[k+1]] == 0, b[n, ReplacePart[l, {k -> 1, k+1 -> 1}]], 0] + If[k+1 < Length[l] && l[[k+1]] == 0 && l[[k+2]] == 0, b[n, ReplacePart[l, {k -> 1, k+1 -> 1, k+2 -> 1}]], 0]]]]]; a[n_, k_] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 16 2013, translated from Maple *)
A364457
Number A(n,k) of tilings of a k X n rectangle using dominoes and trominoes (of any shape); square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 6, 6, 1, 1, 1, 2, 17, 30, 17, 2, 1, 1, 2, 43, 145, 145, 43, 2, 1, 1, 3, 108, 733, 1352, 733, 108, 3, 1, 1, 4, 280, 3540, 12688, 12688, 3540, 280, 4, 1, 1, 5, 727, 17300, 115958, 226922, 115958, 17300, 727, 5, 1
Offset: 0
A(3,2) = A(2,3) = 6:
.___. .___. .___. .___. .___. .___.
| | | |___| | | | |___| | ._| |_. |
| | | |___| |_|_| | | | |_| | | |_|
|_|_| |___| |___| |_|_| |___| |___| .
.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, 1, 1, 1, 2, 2, 3, ...
1, 1, 2, 6, 17, 43, 108, 280, ...
1, 1, 6, 30, 145, 733, 3540, 17300, ...
1, 1, 17, 145, 1352, 12688, 115958, 1075397, ...
1, 2, 43, 733, 12688, 226922, 3927233, 68846551, ...
1, 2, 108, 3540, 115958, 3927233, 128441094, 4263997124, ...
1, 3, 280, 17300, 1075397, 68846551, 4263997124, 267855152858, ...
Columns (or rows) k=0-10 give:
A000012,
A182097(n) =
A000931(n+3),
A019439,
A364460,
A364155,
A364556,
A364616,
A364617,
A364632,
A364638,
A364640.
A165716
Number of tilings of a 3 X n rectangle using dominoes and right trominoes.
Original entry on oeis.org
1, 0, 5, 8, 55, 140, 633, 1984, 7827, 26676, 99621, 351080, 1283247, 4583580, 16611505, 59652624, 215457835, 775371268, 2796772765, 10073343672, 36315180295, 130843331180, 471599612393, 1699398816608, 6124635653443, 22071172760532, 79541846573973
Offset: 0
a(2) = 5, because there are 5 tilings of a 3 X 2 rectangle using dominoes and right trominoes:
.___. .___. ._._. .___. .___.
|___| |_._| | | | | ._| |_. |
|___| | | | |_|_| |_| | | |_|
|___| |_|_| |___| |___| |___|
-
a:= n-> (Matrix([[55, 8, 5, 0, 1]]). Matrix(5, (i,j)-> if i=j-1 then 1 elif j=1 then [2, 6, -4, 11, 2][i] else 0 fi)^n)[1,5]: seq(a(n), n=0..25);
-
a[n_] := Last[{55, 8, 5, 0, 1} . MatrixPower[ Table[ Which[i == j - 1, 1, j == 1, {2, 6, -4, 11, 2}[[i]], True, 0], {i, 1, 5}, {j, 1, 5}], n]]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jul 19 2012, translated from Maple *)
LinearRecurrence[{2,6,-4,11,2},{1,0,5,8,55},30] (* Harvey P. Dale, Mar 19 2013 *)
A165791
Number of tilings of a 4 X n rectangle using dominoes and right trominoes.
Original entry on oeis.org
1, 1, 11, 55, 380, 2319, 15171, 96139, 619773, 3962734, 25445515, 163048957, 1045897075, 6705473761, 43001795070, 275730928993, 1768128097215, 11337760387473, 72702310606249, 466192677008538, 2989403530821497, 19169143325987983, 122919655766448729
Offset: 0
a(2) = 11, because there are 11 tilings of a 4 X 2 rectangle using dominoes and right trominoes:
.___. .___. .___. ._._. ._._. .___. .___. .___. .___. .___. .___.
|___| |___| |_._| | | | | | | |___| |___| | ._| |_. | | ._| |_. |
|___| |_._| | | | |_|_| |_|_| | ._| |_. | |_| | | |_| |_| | | |_|
|___| | | | |_|_| |___| | | | |_| | | |_| |___| |___| | |_| |_| |
|___| |_|_| |___| |___| |_|_| |___| |___| |___| |___| |___| |___| .
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (4, 21, -25, -65, -17, 24, -11, -15, 9).
-
a:= n-> (Matrix([[619773, 96139, 15171, 2319, 380, 55, 11, 1, 1]]). Matrix(9, (i,j)-> if i=j-1 then 1 elif j=1 then [4, 21, -25, -65, -17, 24, -11, -15, 9][i] else 0 fi)^n)[1,9]: seq(a(n), n=0..25);
-
a[n_] := {619773, 96139, 15171, 2319, 380, 55, 11, 1, 1} . MatrixPower[ Table[ Which[i == j-1, 1, j == 1, {4, 21, -25, -65, -17, 24, -11, -15, 9}[[i]], True, 0], {i, 1, 9}, {j, 1, 9}], n] // Last; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 04 2013, translated and adapted from Alois P. Heinz's Maple program *)
A219994
Number of tilings of an n X n square using dominoes and right trominoes.
Original entry on oeis.org
1, 0, 2, 8, 380, 21272, 5350806, 3238675344, 6652506271144, 38896105985522272, 711716770252031164458, 38776997923112110535353528, 6460929292946758939597712150496, 3245656750963660788826395580466708824, 4953412325525289651086730443567098343730966, 22873302288206466754758793232467436030071524731072
Offset: 0
a(3) = 8, because there are 8 tilings of a 3 X 3 square using dominoes and right trominoes:
.___._. .___._. .___._. .___._.
|___| | |___| | |___| | |_. | |
| ._|_| | | |_| | |___| | |_|_|
|_|___| |_|___| |_|___| |_|___|
._.___. ._.___. ._.___. ._.___.
| |___| | | ._| | |___| | |___|
|___| | |_|_| | |_|_. | |_| | |
|___|_| |___|_| |___|_| |___|_| .
A353877
Triangle read by rows: T(n,k) = number of tilings of a n X k rectangle using right trominoes, dominoes and 1 X 1 tiles, n >= 0, k = 0..n.
Original entry on oeis.org
1, 1, 1, 1, 2, 11, 1, 3, 44, 369, 1, 5, 189, 3633, 83374, 1, 8, 798, 34002, 1817897, 90916452, 1, 13, 3383, 323293, 40220893, 4635661331, 546063639624, 1, 21, 14328, 3058623, 886130549, 235025597912, 63919977468729, 17259079054003609, 1, 34, 60697, 28982628, 19546906987, 11935601703140, 7495901454256347, 4669873251135795702, 2916019543694306398589
Offset: 0
Triangle begins
n\k_0__1____2______3________4__________5____________6
0: 1
1: 1 1
2: 1 2 11
3: 1 3 44 369
4: 1 5 189 3633 83374
5: 1 8 798 34002 1817897 90916452
6: 1 13 3383 323293 40220893 4635661331 546063639624
A219988
Number of tilings of a 5 X n rectangle using dominoes and right trominoes.
Original entry on oeis.org
1, 0, 24, 140, 2319, 21272, 262191, 2746048, 31411948, 342302244, 3830482893, 42241878920, 469601959777, 5197411955932, 57664560160890, 638914582091712, 7084373947760105, 78520055192688696, 870480364546718647, 9649003719594586976, 106963676725852631636
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (6, 76, -182, -590, 2722, -6151, -1636, 17717, -15910, -482, 10814, -4832, -4330, -5915, 13616, -8422, 2920, -216, -20).
-
gf:= (2*x^18 +52*x^17 -358*x^16 +1396*x^15 -3682*x^14 +4644*x^13 -2629*x^12 -1426*x^11 +906*x^10 +4146*x^9 -2315*x^8 -2804*x^7 +4106*x^6 -1636*x^5 +245*x^4 +178*x^3 -52*x^2 -6*x +1) /
(20*x^19 +216*x^18 -2920*x^17 +8422*x^16 -13616*x^15 +5915*x^14 +4330*x^13 +4832*x^12 -10814*x^11 +482*x^10 +15910*x^9 -17717*x^8 +1636*x^7 +6151*x^6 -2722*x^5 +590*x^4 +182*x^3 -76*x^2 -6*x +1):
a:= n-> coeff (series (gf, x, n+1), x, n):
seq (a(n), n=0..30);
A219989
Number of tilings of a 6 X n rectangle using dominoes and right trominoes.
Original entry on oeis.org
1, 1, 53, 633, 15171, 262191, 5350806, 100578811, 1973546988, 37873593799, 735394314429, 14191155767741, 274752269763958, 5310160930571538, 102725211030603178, 1986240719213420369, 38415016070710912599, 742863889918219971720, 14366465865750557446408
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- Index entries for linear recurrences with constant coefficients, signature (13, 198, -1268, -5078, 29776, -59713, 78279, 498954, 1798776, 561821, -20759881, -9444877, 11727284, 134747676, -130787555, 21043915, 112821018, 214359517, -815649290, -545218943, 1428249826, 341486785, -795173421, -179637116, 189274778, 114723369, -52063405, -16579985, 10066106, -2491759, -1460964, 106664, 83096, -3524).
-
gf:= (144*x^33 -16884*x^32 -172332*x^31 +37368*x^30 +1446802*x^29 +1843379*x^28 +3892967*x^27 -4330825*x^26 -7997135*x^25 +2597250*x^24 +20344704*x^23 +1683173*x^22 -102335065*x^21 -11071738*x^20
+108818264*x^19 +20558409*x^18 -23625389*x^17 -12070930*x^16 +22478862*x^15 -21548636*x^14 -14801976*x^13 +5193535*x^12 +6957072*x^11 +1167575*x^10 -1273601*x^9 -201269*x^8 -40977*x^7 +40180*x^6 -17860*x^5 +2794*x^4 +1014*x^3 -158*x^2 -12*x +1) /
(3524*x^34 -83096*x^33 -106664*x^32 +1460964*x^31 +2491759*x^30 -10066106*x^29 +16579985*x^28 +52063405*x^27 -114723369*x^26 -189274778*x^25 +179637116*x^24 +795173421*x^23 -341486785*x^22
-1428249826*x^21 +545218943*x^20 +815649290*x^19 -214359517*x^18 -112821018*x^17 -21043915*x^16 +130787555*x^15 -134747676*x^14 -11727284*x^13 +9444877*x^12 +20759881*x^11 -561821*x^10 -1798776*x^9 -498954*x^8 -78279*x^7 +59713*x^6 -29776*x^5 +5078*x^4 +1268*x^3 -198*x^2 -13*x +1):
a:= n-> coeff (series (gf, x, n+1), x, n):
seq (a(n), n=0..30);
A219990
Number of tilings of a 7 X n rectangle using dominoes and right trominoes.
Original entry on oeis.org
1, 0, 117, 1984, 96139, 2746048, 100578811, 3238675344, 111496884663, 3704964324320, 125449223494157, 4205142104025144, 141722416759943105, 4762489676605782896, 160291284486676070239, 5390369708368427166312, 181353331398435867957049, 6099936611677114512527724
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- Vaclav Kotesovec, G.f. for A219990
- Index entries for linear recurrences with constant coefficients, signature (16, 828, -4894, -129950, 938794, 3076050, -73254056, 421387662, 849120418, -13714442525, 30545493728, 14247793479, -434718686270, -107645686099, -1299668668124, 35772839257223, -35931151572218, -119742324469870, -78216388113118, 1299560070314604, 1695384887837968, -25717356362574307, 50034906477121890, 10984539052892183, -199056082381036950, 381880294522734602, -478812415872955104, 1074167100263519206, -1179118001816919606, -174464365325254476, 2263121403940087100, -7629116999653731671, 16803247405222769324, -22344349883539447498, -4000409234281186364, -1706838123391389358, 13090805659244841300, 61003711574632273267, -57770563416503518400, 46875462436502843417, 5466013676505127022, -105153829059235247366, -120388104859890694460, 186194603632741562421, 129437236988775243440, -205177320074449805604, 155777539607171964998, -70147759384372501785, -110875152336965128526, 119895950939565612691, -23617010427386852756, -394683463178827092, -7789531116648697390, 1361975286360726935, 4555495413222005656, -2334498777819868462, 241757533961242782, 92501547981895820, -19476665773899792, -1134607808488740, 115594985559448, -6099935845648, -754632052096, 1782882432).
Showing 1-10 of 13 results.
Comments