cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A173947 a(n) = numerator of (Zeta(2, 1/4) - Zeta(2, n+1/4)), where Zeta is the Hurwitz Zeta function.

Original entry on oeis.org

0, 16, 416, 34096, 5794624, 1680121936, 82501802464, 2065646660464, 1739147340740224, 210617970218777104, 288533264855755545376, 485294472126860897387056, 485518650207447822251456
Offset: 0

Views

Author

Artur Jasinski, Mar 03 2010

Keywords

Comments

For A173947/16 see A173949.
a(n+1)/A173948(n+1) =: r(n) = (Zeta(2, 1/4) - Zeta(2, n + 5/4)), the partial sum Sum_{k=0..n} 1/(k + 1/4)^2, n >= 0. The limit is Zeta(2, 1/4) = A282823 = 16*A222183. - Wolfdieter Lang, Nov 14 2017

Crossrefs

Cf. A006752, A120268, A173945, A173948 (denominators), A173949.

Programs

  • Magma
    [1] cat [Numerator((&+[1/(4*k+1)^2: k in [0..n-1]])): n in [1..20]]; // G. C. Greubel, Aug 22 2018
  • Maple
    r := n -> Psi(1, 1/4) - Zeta(0, 2, n+1/4):
    seq(numer(simplify(r(n))), n=0..13); # Peter Luschny, Nov 14 2017
  • Mathematica
    Table[Numerator[FunctionExpand[8*Catalan + Pi^2 - Zeta[2, (4*n + 1)/4]]], {n, 0, 20}] (* Vaclav Kotesovec, Nov 14 2017 *)
    Numerator[Table[128*n*Sum[(1 + 4*k + 2*n) / ((1 + 4*k)^2*(1 + 4*k + 4*n)^2), {k, 0, Infinity}], {n, 0, 20}]] (* Vaclav Kotesovec, Nov 14 2017 *)
    Numerator[Table[16*Sum[1/(4*k + 1)^2, {k, 0, n - 1} ], {n, 0, 20}]] (* Vaclav Kotesovec, Nov 14 2017 *)
  • PARI
    for(n=0,20, print1(numerator(sum(k=0,n-1, 1/(4*k+1)^2)), ", ")) \\ G. C. Greubel, Aug 22 2018
    

Formula

a(n) = numerator of 8*Catalan + Pi^2 - Zeta(2, (4 n + 1)/4), with the Catalan constant given in A006752.
a(n) = numerator(r(n)) with r(n) = Zeta(2, 1/4) - Zeta(2, n + 1/4), with the Hurwitz Zeta function (see the name). With Zeta(2, 1/4) = Psi(1, 1/4) = 8*Catalan + Pi^2 this is the preceding formula, where Psi(1, z) is the Trigamma function. - Wolfdieter Lang, Nov 14 2017

Extensions

Name simplified and offset set to 0 by Peter Luschny, Nov 14 2017

A173949 a(n) = numerator of (Zeta(2, 1/4) - Zeta(2, n+1/4))/16, where Zeta is the Hurwitz Zeta function.

Original entry on oeis.org

0, 1, 26, 2131, 362164, 105007621, 5156362654, 129102916279, 108696708796264, 13163623138673569, 18033329053484721586, 30330904507928806086691, 30344915637965488890716, 1487479897654682071525709
Offset: 0

Views

Author

Artur Jasinski, Mar 03 2010

Keywords

Comments

For the Catalan constant see A006752.
The denominators are given in A173948.
a(n+1)/A173948(n+1), for n>= 0, gives the partial sum Sum_{k=0..n} 1/(4*k + 1)^2. For {(4*k + 1)^2}A016814.%20The%20limit%20n%20-%3E%20infinity%20is%20given%20in%20A222183%20as%201.074833072...%20.%20-%20_Wolfdieter%20Lang">{k>=0} see A016814. The limit n -> infinity is given in A222183 as 1.074833072... . - _Wolfdieter Lang, Nov 14 2017

Examples

			The rationals r(n) begin: 0/1, 1/1, 26/25, 2131/2025, 362164/342225, 105007621/98903025, 5156362654/4846248225, 129102916279/121156205625, 108696708796264/101892368930625, 13163623138673569/12328976640605625, ... - _Wolfdieter Lang_, Nov 14 2017
		

Crossrefs

Programs

  • Magma
    [0] cat [Numerator((&+[1/(4*k+1)^2: k in [0..n-1]])): n in [1..20]]; // G. C. Greubel, Aug 23 2018
  • Maple
    r := n -> (Psi(1, 1/4) - Zeta(0, 2, n+1/4))/16:
    seq(numer(simplify(r(n))), n=0..13); # Peter Luschny, Nov 14 2017
  • Mathematica
    Table[Numerator[FunctionExpand[(8*Catalan + Pi^2 - Zeta[2, (4*n + 1)/4])/16]], {n, 0, 20}] (* Vaclav Kotesovec, Nov 14 2017 *)
    Numerator[Table[Sum[1/(4*k + 1)^2, {k, 0, n-1}], {n, 0, 20}]] (* Vaclav Kotesovec, Nov 14 2017 *)
  • PARI
    for(n=0,20, print1(numerator(sum(k=0,n-1, 1/(4*k+1)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
    

Formula

a(n) = numerator of expression (8*Catalan + Pi^2 - Zeta(2, (4*n + 1)/4))/16.
a(n) = numerator(r(n)) with r(n) = (Zeta(2,1/4) - Zeta(2, n + 1/4))/16, with the Hurwitz Zeta function Z(2, k). With Zeta(2,1/4) = 8 Catalan + Pi^2 this is the preceding formula, and Zeta(2, n + 1/4) = Psi(1, n + 1/4) with the polygamma (trigamma) function Psi(1, k). - Wolfdieter Lang, Nov 14 2017

Extensions

Edited by Wolfdieter Lang, Nov 14 2017
Name changed according to a formula of Lang by Peter Luschny, Nov 14 2017

A050460 a(n) = Sum_{d|n, n/d=1 mod 4} d.

Original entry on oeis.org

1, 2, 3, 4, 6, 6, 7, 8, 10, 12, 11, 12, 14, 14, 18, 16, 18, 20, 19, 24, 22, 22, 23, 24, 31, 28, 30, 28, 30, 36, 31, 32, 34, 36, 42, 40, 38, 38, 42, 48, 42, 44, 43, 44, 60, 46, 47, 48, 50, 62, 54, 56, 54, 60, 66, 56, 58, 60, 59, 72, 62, 62, 73, 64, 84, 68
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Comments

Not multiplicative: a(3)*a(7) <> a(21), for example.

Crossrefs

Programs

  • Maple
    A050460 := proc(n)
            a := 0 ;
            for d in numtheory[divisors](n) do
                    if (n/d) mod 4 = 1 then
                            a := a+d ;
                    end if;
            end do:
            a;
    end proc:
    seq(A050460(n),n=1..40) ; # R. J. Mathar, Dec 20 2011
  • Mathematica
    a[n_] := DivisorSum[n, Boole[Mod[n/#, 4] == 1]*#&]; Array[a, 70] (* Jean-François Alcover, Dec 01 2015 *)
  • PARI
    a(n)=sumdiv(n,d,if(n/d%4==1,d)) \\ Charles R Greathouse IV, Dec 04 2013

Formula

G.f.: Sum_{n>0} n*x^n/(1-x^(4*n)). - Vladeta Jovovic, Nov 14 2002
G.f.: Sum_{k>0} x^(4*k-3) / (1 - x^(4*k-3))^2. - Seiichi Manyama, Jun 29 2023
from Amiram Eldar, Nov 05 2023: (Start)
a(n) = A002131(n) - A050464(n).
a(n) = A050469(n) + A050464(n).
a(n) = (A002131(n) + A050469(n))/2.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A222183. (End)

A282823 Decimal expansion of Pi^2 + 8*K, where K is Catalan's constant.

Original entry on oeis.org

1, 7, 1, 9, 7, 3, 2, 9, 1, 5, 4, 5, 0, 7, 1, 1, 0, 7, 3, 9, 2, 7, 1, 3, 1, 9, 1, 1, 9, 3, 3, 5, 2, 2, 4, 0, 2, 1, 5, 0, 6, 8, 9, 4, 4, 0, 1, 4, 9, 4, 1, 6, 7, 7, 0, 0, 5, 4, 5, 3, 3, 4, 3, 3, 3, 1, 9, 4, 1, 4, 8, 9, 8, 0, 6, 2, 9, 2, 4, 3, 3, 9, 8, 8, 3, 6, 6, 2, 5, 5, 0, 7
Offset: 2

Views

Author

Bruno Berselli, Mar 06 2017

Keywords

Examples

			17.19732915450711073927131911933522402150689440149416770054533433319414...
		

Crossrefs

Programs

Formula

Equals 16*A222183.
Equals Psi(1, 1/4), where Psi(r, x) is the Polygamma function of order r.
Equals Sum_{k>=0} 1/(k + 1/4)^2. - Amiram Eldar, May 17 2022

A247037 Decimal expansion of Sum_{k >= 0} 1/(4*k+3)^2.

Original entry on oeis.org

1, 5, 8, 8, 6, 7, 4, 7, 7, 9, 7, 9, 4, 7, 5, 4, 0, 6, 1, 4, 9, 8, 5, 3, 9, 3, 0, 0, 2, 6, 0, 6, 7, 3, 9, 0, 5, 7, 0, 0, 3, 1, 5, 2, 5, 8, 1, 1, 7, 1, 3, 3, 4, 7, 0, 1, 7, 5, 8, 5, 2, 7, 6, 2, 0, 2, 8, 7, 1, 2, 9, 1, 5, 1, 3, 0, 7, 2, 9, 4, 2, 9, 4, 7, 9, 3, 2, 5, 8, 1, 2, 6, 9, 3, 5, 1, 9, 6, 1, 3, 6, 4, 7
Offset: 0

Views

Author

Jean-François Alcover, Sep 10 2014

Keywords

Examples

			0.158867477979475406149853930026067390570031525811713347...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.7 Catalan's constant p. 55.

Crossrefs

Programs

Formula

Equals Pi^2/16 - G/2, where G is Catalan's constant.
Equals A222068 - A006752/2.
Equals zeta(2, 3/4)/16 = Psi(1, 3/4)/16, with the Hurwitz zeta function and the Trigamma function Psi(1, z), and the partial sums of the series given in the name are {A173955(n+2) / A173954(n+2)}{n>=0}. - _Wolfdieter Lang, Nov 14 2017
Equals Integral_{x=1..oo} log(x)/(x^4 - 1) dx. - Amiram Eldar, Jul 17 2020
Showing 1-5 of 5 results.