cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A016779 a(n) = (3*n + 1)^3.

Original entry on oeis.org

1, 64, 343, 1000, 2197, 4096, 6859, 10648, 15625, 21952, 29791, 39304, 50653, 64000, 79507, 97336, 117649, 140608, 166375, 195112, 226981, 262144, 300763, 343000, 389017, 438976, 493039, 551368, 614125, 681472, 753571, 830584, 912673, 1000000, 1092727, 1191016
Offset: 0

Views

Author

Keywords

Comments

The inverse binomial transform is 1, 63, 216, 162, 0, 0, 0 (0 continued). R. J. Mathar, May 07 2008
Perfect cubes with digital root 1 in base 10. Proof: perfect cubes are one of (3*s)^3, (3*s+1)^3 or (3*s+2)^3. Digital roots of (3*s)^3 are 0, digital roots of (3*s+1)^3 are 1, and digital roots of (3*s+2)^3 are 8, using trinomial expansion and the multiplicative property of digits roots. - R. J. Mathar, Jul 31 2010

Examples

			a(2) = (3*2+1)^3 = 343.
a(6) = (3*6+1)^3 = 6859.
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.6.3.
  • Amarnath Murthy, Fabricating a perfect cube with a given valid digit sum (to be published)

Crossrefs

Programs

Formula

Sum_{n>=0} 1/a(n) = 2*Pi^3 / (81*sqrt(3)) + 13*zeta(3)/27.
O.g.f.: (1 + 60*x + 93*x^2 + 8*x^3)/(1 - x)^4. - R. J. Mathar, May 07 2008
E.g.f.: (1 + 63*x + 108*x^2 + 27*x^3)*exp(x). - Ilya Gutkovskiy, Jun 16 2016
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Oct 02 2020
Sum_{n>=1} (-1)^n/a(n) = A226735. - R. J. Mathar, Feb 07 2024

A262178 Decimal expansion of Sum_{k>=0} (-1)^k/(3*k+1)^2.

Original entry on oeis.org

9, 5, 1, 5, 1, 7, 7, 1, 3, 4, 1, 6, 4, 1, 5, 0, 4, 1, 8, 6, 6, 4, 8, 2, 8, 3, 1, 4, 7, 2, 7, 4, 1, 5, 3, 1, 5, 4, 4, 7, 2, 8, 5, 0, 8, 2, 3, 2, 6, 9, 7, 0, 5, 1, 3, 3, 0, 0, 3, 2, 4, 3, 1, 5, 2, 9, 6, 1, 1, 3, 4, 3, 0, 2, 2, 7, 5, 8, 3, 0, 2, 1, 9, 9, 3, 4, 7, 4, 8, 9, 3, 7
Offset: 0

Views

Author

Bruno Berselli, Sep 14 2015

Keywords

Comments

Also, decimal expansion of Sum_{h>=0} Sum_{j=0..h} (-1)^j*binomial(h, j)/(4*(1 + h)*(1 + 6*j)*(2 + 3*j)).

Examples

			1 - 1/16 + 1/49 - 1/100 + 1/169 - 1/256 + 1/361 - 1/484 + ...
0.9515177134164150418664828314727415315447285082326970513300324315296113...
		

Crossrefs

Cf. A006752.
Cf. A113476: Sum_{k>=0} (-1)^k/(3*k+1).
Cf. A226735: Sum_{k>=0} (-1)^k/(3*k+1)^3.

Programs

  • Mathematica
    RealDigits[(Zeta[2, 1/6] - Zeta[2, 2/3])/36, 10, 100][[1]]
  • PARI
    sumalt(k=0, (-1)^k/(3*k+1)^2) \\ Michel Marcus, Sep 14 2015
    
  • PARI
    zetahurwitz(2,1/6)/36 - zetahurwitz(2,2/3)/36 \\ Charles R Greathouse IV, Jan 31 2018

Formula

Equals (zeta(2, 1/6) - zeta(2, 2/3))/36, where zeta(s,a) is the Hurwitz zeta function.

A370000 Decimal expansion of Sum_{k>=0} (-1)^k/(3*k+2)^3.

Original entry on oeis.org

1, 1, 8, 4, 3, 8, 7, 7, 8, 4, 2, 5, 0, 5, 7, 5, 2, 9, 6, 2, 5, 6, 1, 6, 8, 6, 1, 9, 4, 3, 0, 2, 5, 4, 3, 8, 7, 3, 2, 8, 8, 7, 9, 8, 2, 9, 7, 8, 3, 5, 6, 6, 8, 2, 4, 8, 0, 7, 9, 6, 8, 5, 0, 3, 4, 4, 7, 5, 5, 7, 1, 7, 5, 8, 4, 1, 0, 2, 8, 2, 0, 4, 2, 9, 0, 0, 4, 5, 9, 6, 2, 1, 1, 9
Offset: 0

Views

Author

R. J. Mathar, Feb 07 2024

Keywords

Examples

			1/8 - 1/125 + 1/512 - 1/1331 + ... = 0.118438778425057529625616861943025438732887982...
		

Crossrefs

Programs

  • Maple
    5*Pi^3/2/3^(9/2)-13*Zeta(3)/36 ; evalf(%) ;
  • Mathematica
    RealDigits[5*Pi^3/(2*3^(9/2)) - 13*Zeta[3]/36, 10, 120][[1]] (* Amiram Eldar, Feb 09 2024 *)
  • PARI
    sumalt(k=0, (-1)^k/(3*k+2)^3) \\ Michel Marcus, Feb 07 2024

Formula

Equals Sum_{n>=0} (-1)^n/A016791(n).
Equals A226735 - 13*zeta(3)/18 = 5*Pi^3/(2*3^(9/2)) - 13*zeta(3)/36.
Showing 1-3 of 3 results.