A334940 Partial sums of A230595.
0, 0, 0, 1, 1, 3, 3, 3, 4, 6, 6, 6, 6, 8, 10, 10, 10, 10, 10, 10, 12, 14, 14, 14, 15, 17, 17, 17, 17, 17, 17, 17, 19, 21, 23, 23, 23, 25, 27, 27, 27, 27, 27, 27, 27, 29, 29, 29, 30, 30, 32, 32, 32, 32, 34, 34, 36, 38, 38, 38, 38, 40, 40, 40, 42, 42, 42, 42, 44, 44, 44, 44, 44, 46
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Programs
-
Maple
a:= proc(n) option remember; `if`(n<4, 0, a(n-1) + `if`(numtheory[bigomega](n)=2, `if`(issqr(n), 1, 2), 0)) end: seq(a(n), n=1..80); # Alois P. Heinz, May 20 2020
-
Mathematica
f[n_] := DivisorSum[n, 1 &, PrimeQ[#] && PrimeQ[n/#] &]; Accumulate @ Array[f, 100] (* Amiram Eldar, May 20 2020 *)
-
PARI
a(n) = my(s=sqrtint(n)); 2*sum(k=1, s, if(isprime(k), primepi(n\k), 0)) - primepi(s)^2;
-
Python
from math import isqrt from sympy import primepi, prime def A334940(n): return (int(sum(primepi(n//prime(k))-k+1 for k in range(1,primepi(isqrt(n))+1)))<<1) - primepi(isqrt(n)) # Chai Wah Wu, Jul 23 2024
Formula
a(n) ~ 2*n*log(log(n))/log(n). - Vaclav Kotesovec, May 21 2020
Comments