A038342 G.f.: 1/(1 - 3 x - 3 x^2 + 4 x^3 + x^4 - x^5).
1, 3, 12, 41, 146, 511, 1798, 6314, 22187, 77946, 273856, 962142, 3380337, 11876254, 41725295, 146595013, 515037713, 1809501081, 6357387289, 22335644540, 78472648463, 275700866485, 968630080476, 3403123989780
Offset: 0
Keywords
References
- Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002.
Links
- F. v. Lamoen, Wave sequences
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), p. 22-31 (formula 5).
- Index entries for linear recurrences with constant coefficients, signature (3,3,-4,-1,1).
Programs
-
Mathematica
b = {-1, 3, 3, -4, -1, 1}; p[x_] := Sum[x^(n - 1)*b[[7 - n]], {n, 1, 6}] q[x_] := ExpandAll[x^5*p[1/x]] Table[ SeriesCoefficient[ Series[x/q[x], {x, 0, 30}], n], {n, 0, 30}] (* Roger L. Bagula and Gary W. Adamson, Sep 19 2006 *) LinearRecurrence[{3,3,-4,-1,1},{1,3,12,41,146},30] (* Harvey P. Dale, Aug 27 2012 *)
Formula
a(n) = 3a(n-1)+3a(n-2)-4a(n-3)-a(n-4)+a(n-5). Also a(n) = b(4n+2) with b(n) as in 5-wave sequence A038201.
G.f.: 1/(1 - 3 x - 3 x^2 + 4 x^3 + x^4 - x^5) = -1/C(11, x), with C(11, x) the minimal polynomial of 2*cos(Pi/11) (see the name and A187360 for C). - Wolfdieter Lang, Nov 07 2013
Extensions
More terms from Benoit Cloitre, Apr 02 2002
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 08 2007
Comments