A231545 Numbers n such that n = sigma(n) - sigma(n-1).
2, 6, 8586, 16120, 29886160
Offset: 1
Keywords
Examples
6 is in sequence because antisigma(6) = antisigma(5) = 9.
Formula
a(n) = A067816(n) + 1.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
6 is in sequence because antisigma(6) = antisigma(5) = 9.
Sigma(9) = 1+3+9 = 13 < sigma(8) = 1+2+4+8 = 15 so 9 is a term. Sigma(15) = 1+3+5+15 = 24 = sigma(14) = 1+2+7+14 = 24 so 15 is a term. Sigma(63) = 1+3+7+9+21+63 = 104 > sigma(62) = 1+2+31+62 = 96 and 63 is not a term.
filter:= m -> sigma(m) <= sigma(m-1): select(filter, [$1..500]);
Select[Range[2, 123], DivisorSigma[1, #] <= DivisorSigma[1, # - 1] &] (* Amiram Eldar, Mar 06 2020 *) Flatten[Position[Partition[DivisorSigma[1,Range[200]],2,1],?(#[[2]]<= #[[1]]&),1,Heads->False]]+1 (* _Harvey P. Dale, Mar 28 2020 *)
isok(m) = (m>1) && (sigma(m) <= sigma(m-1)); \\ Michel Marcus, Mar 09 2020
sigma(77) = 1+7+11+77 = 96 < sigma(76) = 1+2+4+19+38+76 = 140, hence composite 77 is a term. sigma(135) = 1+3+5+9+15+27+45+135 = 240 > sigma(134) = 1+2+67+134 = 204, hence composite 135 is not a term.
filter:= m -> not isprime(m) and numtheory:-sigma(m) < numtheory:-sigma(m-1) : select(filter, [$1..500]);
Select[Range[200], CompositeQ[#] && DivisorSigma[1, #] < DivisorSigma[1, # - 1] &] (* Amiram Eldar, Mar 12 2020 *)
isok(m) = (m>1) && !isprime(m) && (sigma(m) < sigma(m-1)); \\ Michel Marcus, Mar 15 2020
12 is in sequence because antisigma(12) = 50 < antisigma(11) = 54.
Select[Range[350],#<(DivisorSigma[1,#]-DivisorSigma[1,#-1])&] (* Harvey P. Dale, May 26 2016 *)
is(n)=nCharles R Greathouse IV, Jul 14 2024
10 is in sequence because antisigma(10) = 37 > antisigma(9) = 32.
with(numtheory); A231711:=n->`if`(sigma(n)-sigma(n-1)A231711(n), n=1..100); # Wesley Ivan Hurt, Nov 14 2013
isok(n) = n > sigma(n) - sigma(n-1); \\ Michel Marcus, Nov 14 2013
166 = 2*83 and 165 = 3*5*11, as 252 = sigma(166) < sigma(165) = 288, hence 166 is a term. 386 = 2*193 and 385 = 5*7*11, as 582 = sigma(386) > sigma(385)= 576, hence 386 is not a term. 766 = 2*383 where 383 = 19^2+19+3 and 765 = 3^2*5*13, as 1152 = sigma(766) < sigma(765) = 1404, hence 766 is a term. 1018 = 2*509 where 509 = 22^2+22+3, and 1017 = 3^2*113, as 1530 = sigma(1018) > sigma(1017) = 1482, hence 1018 is not a term.
filter:= n -> numtheory:-sigma(n) < numtheory:-sigma(n-1): select(filter, [seq(i,i=2..2000,2)]); # Robert Israel, Mar 29 2020
Select[2 * Range[1000], DivisorSigma[1, #] < DivisorSigma[1, #-1] &] (* Amiram Eldar, Mar 24 2020 *)
isok(m) = !(m%2) && (sigma(m) < sigma(m-1)); \\ Michel Marcus, Mar 22 2020
With[{m = 200000}, 1 + Position[Differences[DivisorSigma[1, Range[m]]]/Range[2, m], ?IntegerQ] // Flatten] (* _Amiram Eldar, Dec 31 2024 *)
list(lim) = {my(s1 = 1, s2); for(k = 2, lim, s2 = sigma(k); if(!((s2-s1) % k), print1(k, ", ")); s1 = s2);} \\ Amiram Eldar, Dec 31 2024
sigma(63) = 1+3+7+9+21+63 = 104 > sigma(62) = 1+2+31+62=96 and 63 is in the sequence. sigma(77) = 1+7+11+77 = 96 < sigma(76) = 1+2+4+19+38+76 = 140 and 77 is not a term.
Select[2 * Range[1000] + 1, DivisorSigma[1, #] > DivisorSigma[1, # - 1] &] (* Amiram Eldar, Apr 14 2020 *)
is(n)=n%2 && sigma(n)>sigma(n-1) \\ Charles R Greathouse IV, Apr 14 2020
Comments