cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A232472 2-Fubini numbers.

Original entry on oeis.org

2, 10, 62, 466, 4142, 42610, 498542, 6541426, 95160302, 1520385010, 26468935022, 498766780786, 10114484622062, 219641848007410, 5085371491003502, 125055112347154546, 3255163896227709422, 89416052656071565810, 2584886208925055791982, 78447137202259689678706, 2493719594804686310662382
Offset: 2

Views

Author

N. J. A. Sloane, Nov 27 2013

Keywords

Examples

			G.f.: 2*x^2 + 10*x^3 + 62*x^4 + 466*x^5 + 4142*x^6 + 42610*x^7 + 498542*x^8 + ...
		

Crossrefs

Programs

  • Magma
    r:=2; r_Fubini:=func;
    [r_Fubini(n, r): n in [r..22]]; // Bruno Berselli, Mar 30 2016
  • Maple
    # r-Stirling numbers of second kind (e.g., A008277, A143494, A143495):
    T := (n,k,r) -> (1/(k-r)!)*add ((-1)^(k+i+r)*binomial(k-r,i)*(i+r)^(n-r),i = 0..k-r):
    # r-Bell numbers (e.g. A000110, A005493, A005494):
    B := (n,r) -> add(T(n,k,r),k=r..n);
    SB := r -> [seq(B(n,r),n=r..30)];
    SB(2);
    # r-Fubini numbers (e.g., A000670, A232472, A232473, A232474):
    F := (n,r) -> add((k)!*T(n,k,r),k=r..n);
    SF := r -> [seq(F(n,r),n=r..30)];
    SF(2);
  • Mathematica
    Rest[max=20; t=Sum[n^(n - 1) x^n / n!, {n, 1, max}]; 2 Range[0, max]!CoefficientList[Series[D[1 / (1 - y (Exp[x] - 1)), y] /.y->1, {x, 0, max}], x]] (* Vincenzo Librandi Jan 03 2016 *)
    Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Table[Fubini[n, 2], {n, 2, 22}] (* Jean-François Alcover, Mar 30 2016 *)

Formula

Let A(x) be the g.f. A232472, B(x) the g.f. A000670, then A(x) = (1-x)*B(x) - 1. - Sergei N. Gladkovskii, Nov 29 2013
a(n) = Sum_{k>=2} T_k*k^(n-2)/2^k where T_k is the (k-1)-st triangular number (i.e., T_k = k*(k-1)/2). - Derek Orr, Jan 01 2016
a(n) = 2*A069321(n-1). - Vincenzo Librandi, Jan 03 2016, corrected by Vaclav Kotesovec, Jul 01 2018
a(n) ~ n! / (2 * (log(2))^(n+1)). - Vaclav Kotesovec, Jul 01 2018
From Peter Bala, Dec 08 2020: (Start)
a(n+2) = Sum_{k = 0..n} (k+2)!/k!*( Sum{i = 0..k} (-1)^(k-i)*binomial(k,i)*(i+2)^n ).
a(n+2) = Sum_{k = 0..n} 2^(n-k)*binomial(n,k)*( Sum_{i = 0..k} Stirling2(k,i)*(i+2)! ).
a(n) = 2*A069321(n-1) = A000670(n) - A000670(n-1).
a(n+1)= (1/2)*Sum_{k = 0..n} binomial(n,k)*A000670(k+1) for n >= 1.
E.g.f. with offset 0: 2*exp(2*z)/(2 - exp(z))^3 = 2 + 10*z + 62*z^2/2! + 466*z^3/3! + .... (End)

A232473 3-Fubini numbers.

Original entry on oeis.org

6, 42, 342, 3210, 34326, 413322, 5544342, 82077450, 1330064406, 23428165002, 445828910742, 9116951060490, 199412878763286, 4646087794988682, 114884369365147542, 3005053671533400330, 82905724863616146966, 2406054103612912660362, 73277364784409578094742, 2336825320400166931304970
Offset: 3

Views

Author

N. J. A. Sloane, Nov 27 2013

Keywords

Crossrefs

Programs

  • Magma
    r:=3; r_Fubini:=func;
    [r_Fubini(n, r): n in [r..22]]; // Bruno Berselli, Mar 30 2016
  • Maple
    # r-Stirling numbers of second kind (e.g. A008277, A143494, A143495):
    T := (n,k,r) -> (1/(k-r)!)*add ((-1)^(k+i+r)*binomial(k-r,i)*(i+r)^(n-r),i = 0..k-r):
    # r-Bell numbers (e.g. A000110, A005493, A005494):
    B := (n,r) -> add(T(n,k,r),k=r..n);
    SB := r -> [seq(B(n,r),n=r..30)];
    SB(2);
    # r-Fubini numbers (e.g. A000670, A232472, A232473, A232474):
    F := (n,r) -> add((k)!*T(n,k,r),k=r..n);
    SF := r -> [seq(F(n,r),n=r..30)];
    SF(3);
  • Mathematica
    Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Table[Fubini[n, 3], {n, 3, 22}] (* Jean-François Alcover, Mar 30 2016 *)

Formula

From Peter Bala, Dec 16 2020: (Start)
a(n+3) = Sum_{k = 0..n} (k+3)!/k!*( Sum{i = 0..k} (-1)^(k-i)*binomial(k,i)*(i+3)^n ).
a(n+3) = Sum_{k = 0..n} 3^(n-k)*binomial(n,k)*( Sum_{i = 0..k} Stirling2(k,i)*(i+3)! ).
E.g.f. with offset 0: 6*exp(3*z)/(2 - exp(z))^4 = 6 + 42*z + 342*z^2/2! + 3210*z^3/3! + .... (End)
a(n) ~ n! / (2 * log(2)^(n+1)). - Vaclav Kotesovec, Dec 17 2020

A338875 Array T(n, m) read by ascending antidiagonals: numerators of shifted Fubini numbers F(n, m) where m >= 0.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 13, 5, 1, 1, 75, 2, 5, 1, 1, 541, 191, 29, 29, 1, 1, 4683, 76, 263, 149, 7, 1, 1, 47293, 5081, 4157, 24967, 2687, 727, 1, 1, 545835, 674, 93881, 115567, 44027, 66247, 631, 1, 1, 7087261, 386237, 21209, 377909, 31627, 37728769, 354061, 4481, 1, 1
Offset: 0

Views

Author

Stefano Spezia, Dec 25 2020

Keywords

Examples

			Array T(n, m):
n\m|   0       1       2       3 ...
---+--------------------------------
0  |   1       1       1       1 ...
1  |   1       1       1       1 ...
2  |   3       5       5      29 ...
3  |  13       2      29     149 ...
...
Related table of shifted Fubini numbers F(n, m):
   1   1      1         1 ...
   1 1/2    1/6      1/24 ...
   3 5/6   5/36   29/1440 ...
  13   2 29/180 149/11520 ...
  ...
		

Crossrefs

Cf. A000012 (n = 0 and n = 1), A000670 (m = 0), A226513 (high-order Fubini numbers), A232472, A232473, A232474, A257565, A338873, A338874.
Cf. A338876 (denominators).

Programs

  • Mathematica
    F[n_,m_]:=n!Coefficient[Series[x^m/(x^m-Exp[x]+Sum[x^k/k!,{k,0,m}]),{x,0,n}],x,n]; Table[Numerator[F[n-m,m]],{n,0,9},{m,0,n}]//Flatten
  • PARI
    tm(n, m) = {my(m = matrix(n, n, i, j, if (i==1, if (j==1, 1/(m + 1)!, if (j==2, 1)), if (j==1, (-1)^(i+1)/(m + i)!)))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m; }
    T(n, m) = numerator(n!*matdet(tm(n, m))); \\ Michel Marcus, Dec 31 2020

Formula

T(n, m) = numerator(F(n, m)).
F(n, m) = n!*det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in 1/(m + 1)!, 1, 0, ..., 0 and whose first column consists in 1/(m + 1)!, -1/(m + 2)!, ..., (-1)^(n-1)/(m + n)! (see Proposition 5.1 in Komatsu).
F(n, m) = n!*Sum_{k=0..n-1} F(k, m)/((n - k + m)!*k!) for n > 0 and m >= 0 with F(0, m) = 1 (see Lemma 5.2).
F(n, m) = [x^n] n!*x^m/(x^m - exp(x) + E_m(x)), where E_m(x) = Sum_{n=0..m} x^n/n! (see Theorem 5.3 in Komatsu).
F(n, m) = n!*Sum_{k=1..n} Sum_{i_1+...+i_k=n, i_1,...,i_k>=1} Product_{j=1..k} 1/(i_j + m)! for n > 0 and m >= 0 (see Theorem 5.4).
F(1, m) = 1/(m + 1)! (see Theorem 5.5 in Komatsu).
F(n, m) = n!*Sum_{t_1+2*t_2+...+n*t_n=n} (t_1,...,t_n)!*(-1)^(n-t_1-...-t_n)*Product_{j=1..n} (1/(m + j)!)^t_j for n >= m >= 1 (see Theorem 5.7 in Komatsu).
(-1)^(n-1)/(n + m)! = det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in F(1, m), 1, 0, ..., 0 and whose first column consists in F(1, m), F(2, m)/2!, ..., F(n, m)/n! for n > 0 (see Theorem 5.8 in Komatsu).
Sum_{k=0..n} binomial(n, k)*F(k, m)*F(n-k, m) = - n!/(m^2*m!)*Sum_{l=0..n-1} ((m! + 1)/(m*m!))^(n-l-1)*(l*(m! + 1) - m)/l!*F(l, m) - (n - m)/m*F(n, m) for m > 0 (see Theorem 5.11 in Komatsu).

A338876 Array T(n, m) read by ascending antidiagonals: denominators of shifted Fubini numbers F(n, m) where m >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 1, 36, 24, 1, 1, 30, 180, 1440, 120, 1, 1, 3, 1080, 11520, 2400, 720, 1, 1, 42, 9072, 2419200, 2016000, 1814400, 5040, 1, 1, 1, 90720, 11612160, 60480000, 435456000, 12700800, 40320, 1, 1, 90, 7776, 33177600, 69120000, 548674560000, 21337344000, 812851200, 362880, 1
Offset: 0

Views

Author

Stefano Spezia, Dec 25 2020

Keywords

Examples

			Array T(n, m):
n\m|   0       1       2       3 ...
---+--------------------------------
0  |   1       1       1       1 ...
1  |   1       2       6      24 ...
2  |   1       6      36    1440 ...
3  |   1       1     180   11520 ...
...
Related table of shifted Fubini numbers F(n, m):
   1   1      1         1 ...
   1 1/2    1/6      1/24 ...
   3 5/6   5/36   29/1440 ...
  13   2 29/180 149/11520 ...
  ...
		

Crossrefs

Cf. A000012 (n = 0 or m = 0), A000142, A000670, A226513 (high-order Fubini numbers), A232472, A232473, A232474, A257565, A338873, A338874.
Cf. A338875 (numerators).

Programs

  • Mathematica
    F[n_,m_]:=n!Coefficient[Series[x^m/(x^m-Exp[x]+Sum[x^k/k!,{k,0,m}]),{x,0,n}],x,n]; Table[Denominator[F[n-m,m]],{n,0,9},{m,0,n}]//Flatten
  • PARI
    tm(n, m) = {my(m = matrix(n, n, i, j, if (i==1, if (j==1, 1/(m + 1)!, if (j==2, 1)), if (j==1, (-1)^(i+1)/(m + i)!)))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m; }
    T(n, m) = denominator(n!*matdet(tm(n, m))); \\ Michel Marcus, Dec 31 2020

Formula

T(n, m) = denominator(F(n, m)).
F(n, m) = n!*det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in 1/(m + 1)!, 1, 0, ..., 0 and whose first column consists in 1/(m + 1)!, -1/(m + 2)!, ..., (-1)^(n-1)/(m + n)! (see Proposition 5.1 in Komatsu).
F(n, m) = n!*Sum_{k=0..n-1} F(k, m)/((n - k + m)!*k!) for n > 0 and m >= 0 with F(0, m) = 1 (see Lemma 5.2).
F(n, m) = [x^n] n!*x^m/(x^m - exp(x) + E_m(x)), where E_m(x) = Sum_{n=0..m} x^n/n! (see Theorem 5.3 in Komatsu).
F(n, m) = n!*Sum_{k=1..n} Sum_{i_1+...+i_k=n, i_1,...,i_k>=1} Product_{j=1..k} 1/(i_j + m)! for n > 0 and m >= 0 (see Theorem 5.4).
F(1, m) = 1/(m + 1)! (see Theorem 5.5 in Komatsu).
F(n, m) = n!*Sum_{t_1+2*t_2+...+n*t_n=n} (t_1,...,t_n)!*(-1)^(n-t_1-...-t_n)*Product_{j=1..n} (1/(m + j)!)^t_j for n >= m >= 1 (see Theorem 5.7 in Komatsu).
(-1)^(n-1)/(n + m)! = det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in F(1, m), 1, 0, ..., 0 and whose first column consists in F(1, m), F(2, m)/2!, ..., F(n, m)/n! for n > 0 (see Theorem 5.8 in Komatsu).
Sum_{k=0..n} binomial(n, k)*F(k, m)*F(n-k, m) = - n!/(m^2*m!)*Sum_{l=0..n-1} ((m! + 1)/(m*m!))^(n-l-1)*(l*(m! + 1) - m)/l!*F(l, m) - (n - m)/m*F(n, m) for m > 0 (see Theorem 5.11 in Komatsu).
Showing 1-4 of 4 results.