cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A005493 2-Bell numbers: a(n) = number of partitions of [n+1] with a distinguished block.

Original entry on oeis.org

1, 3, 10, 37, 151, 674, 3263, 17007, 94828, 562595, 3535027, 23430840, 163254885, 1192059223, 9097183602, 72384727657, 599211936355, 5150665398898, 45891416030315, 423145657921379, 4031845922290572, 39645290116637023, 401806863439720943, 4192631462935194064
Offset: 0

Views

Author

Keywords

Comments

Number of Boolean sublattices of the Boolean lattice of subsets of {1..n}.
a(n) = p(n+1) where p(x) is the unique degree n polynomial such that p(k) = A000110(k+1) for k = 0, 1, ..., n. - Michael Somos, Oct 07 2003
With offset 1, number of permutations beginning with 12 and avoiding 21-3.
Rows sums of Bell's triangle (A011971). - Jorge Coveiro, Dec 26 2004
Number of blocks in all set partitions of an (n+1)-set. Example: a(2)=10 because the set partitions of {1,2,3} are 1|2|3, 1|23, 12|3, 13|2 and 123, with a total of 10 blocks. - Emeric Deutsch, Nov 13 2006
Number of partitions of n+3 with at least one singleton and with the smallest element in a singleton equal to 2. - Olivier Gérard, Oct 29 2007
See page 29, Theorem 5.6 of my paper on the arXiv: These numbers are the dimensions of the homogeneous components of the operad called ComTrip associated with commutative triplicial algebras. (Triplicial algebras are related to even trees and also to L-algebras, see A006013.) - Philippe Leroux, Nov 17 2007
Number of set partitions of (n+2) elements where two specific elements are clustered separately. Example: a(1)=3 because 1/2/3, 1/23, 13/2 are the 3 set partitions with 1, 2 clustered separately. - Andrey Goder (andy.goder(AT)gmail.com), Dec 17 2007
Equals A008277 * [1,2,3,...], i.e., the product of the Stirling number of the second kind triangle and the natural number vector. a(n+1) = row sums of triangle A137650. - Gary W. Adamson, Jan 31 2008
Prefaced with a "1" = row sums of triangle A152433. - Gary W. Adamson, Dec 04 2008
Equals row sums of triangle A159573. - Gary W. Adamson, Apr 16 2009
Number of embedded coalitions in an (n+1)-person game. - David Yeung (wkyeung(AT)hkbu.edu.hk), May 08 2008
If prefixed with 0, gives first differences of Bell numbers A000110 (cf. A106436). - N. J. A. Sloane, Aug 29 2013
Sum_{n>=0} a(n)/n! = e^(e+1) = 41.19355567... (see A235214). Contrast with e^(e-1) = Sum_{n>=0} A000110(n)/n!. - Richard R. Forberg, Jan 05 2014

Examples

			For example, a(1) counts (12), (1)-2, 1-(2) where dashes separate blocks and the distinguished block is parenthesized.
		

References

  • Olivier Gérard and Karol A. Penson, A budget of set partition statistics, in preparation. Unpublished as of 2017.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row or column of the array A108087.
Row sums of triangle A143494. - Wolfdieter Lang, Sep 29 2011. And also of triangle A362924. - N. J. A. Sloane, Aug 10 2023

Programs

  • Maple
    with(combinat): seq(bell(n+2)-bell(n+1),n=0..22); # Emeric Deutsch, Nov 13 2006
    seq(add(binomial(n, k)*(bell(n-k)), k=1..n), n=1..23); # Zerinvary Lajos, Dec 01 2006
    A005493  := proc(n) local a,b,i;
    a := [seq(3,i=1..n)]; b := [seq(2,i=1..n)];
    2^n*exp(-x)*hypergeom(a,b,x); round(evalf(subs(x=1,%),66)) end:
    seq(A005493(n),n=0..22); # Peter Luschny, Mar 30 2011
    BT := proc(n,k) option remember; if n = 0 and k = 0 then 1
    elif k = n then BT(n-1,0) else BT(n,k+1)+BT(n-1,k) fi end:
    A005493 := n -> add(BT(n,k),k=0..n):
    seq(A005493(i),i=0..22); # Peter Luschny, Aug 04 2011
    # For Maple code for r-Bell numbers, etc., see A232472. - N. J. A. Sloane, Nov 27 2013
  • Mathematica
    a=Exp[x]-1; Rest[CoefficientList[Series[a Exp[a],{x,0,20}],x] * Table[n!,{n,0,20}]]
    a[ n_] := If[ n<0, 0, With[ {m = n+1}, m! SeriesCoefficient[ # Exp@# &[ Exp@x - 1], {x, 0, m}]]]; (* Michael Somos, Nov 16 2011 *)
    Differences[BellB[Range[30]]] (* Harvey P. Dale, Oct 16 2014 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( exp( x + x * O(x^n)) + 2*x - 1), n))}; /* Michael Somos, Oct 09 2002 */
    
  • PARI
    {a(n) = if( n<0, 0, n+=2; subst( polinterpolate( Vec( serlaplace( exp( exp( x + O(x^n)) - 1) - 1))), x, n))}; /* Michael Somos, Oct 07 2003 */
    
  • Python
    # requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
    from itertools import accumulate
    A005493_list, blist, b = [], [1], 1
    for _ in range(1001):
        blist = list(accumulate([b]+blist))
        b = blist[-1]
        A005493_list.append(blist[-2])
    # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014

Formula

a(n-1) = Sum_{k=1..n} k*Stirling2(n, k) for n>=1.
E.g.f.: exp(exp(x) + 2*x - 1). First differences of Bell numbers (if offset 1). - Michael Somos, Oct 09 2002
G.f.: Sum_{k>=0} (x^k/Product_{l=1..k} (1-(l+1)x)). - Ralf Stephan, Apr 18 2004
a(n) = Sum_{i=0..n} 2^(n-i)*B(i)*binomial(n,i) where B(n) = Bell numbers A000110(n). - Fred Lunnon, Aug 04 2007 [Written umbrally, a(n) = (B+2)^n. - N. J. A. Sloane, Feb 07 2009]
Representation as an infinite series: a(n-1) = Sum_{k>=2} (k^n*(k-1)/k!)/exp(1), n=1, 2, ... This is a Dobinski-type summation formula. - Karol A. Penson, Mar 14 2002
Row sums of A011971 (Aitken's array, also called Bell triangle). - Philippe Deléham, Nov 15 2003
a(n) = exp(-1)*Sum_{k>=0} ((k+2)^n)/k!. - Gerald McGarvey, Jun 03 2004
Recurrence: a(n+1) = 1 + Sum_{j=1..n} (1+binomial(n, j))*a(j). - Jon Perry, Apr 25 2005
a(n) = A000296(n+3) - A000296(n+1). - Philippe Deléham, Jul 31 2005
a(n) = B(n+2) - B(n+1), where B(n) are Bell numbers (A000110). - Franklin T. Adams-Watters, Jul 13 2006
a(n) = A123158(n,2). - Philippe Deléham, Oct 06 2006
Binomial transform of Bell numbers 1, 2, 5, 15, 52, 203, 877, 4140, ... (see A000110).
Define f_1(x), f_2(x), ... such that f_1(x)=x*e^x, f_{n+1}(x) = (d/dx)(x*f_n(x)), for n=2,3,.... Then a(n-1) = e^(-1)*f_n(1). - Milan Janjic, May 30 2008
Representation of numbers a(n), n=0,1..., as special values of hypergeometric function of type (n)F(n), in Maple notation: a(n)=exp(-1)*2^n*hypergeom([3,3...3],[2.2...2],1), n=0,1..., i.e., having n parameters all equal to 3 in the numerator, having n parameters all equal to 2 in the denominator and the value of the argument equal to 1. Examples: a(0)= 2^0*evalf(hypergeom([],[],1)/exp(1))=1 a(1)= 2^1*evalf(hypergeom([3],[2],1)/exp(1))=3 a(2)= 2^2*evalf(hypergeom([3,3],[2,2],1)/exp(1))=10 a(3)= 2^3*evalf(hypergeom([3,3,3],[2,2,2],1)/exp(1))=37 a(4)= 2^4*evalf(hypergeom([3,3,3,3],[2,2,2,2],1)/exp(1))=151 a(5)= 2^5*evalf(hypergeom([3,3,3,3,3],[2,2,2,2,2],1)/exp(1)) = 674. - Karol A. Penson, Sep 28 2007
Let A be the upper Hessenberg matrix of order n defined by: A[i,i-1]=-1, A[i,j]=binomial(j-1,i-1), (i <= j), and A[i,j]=0 otherwise. Then, for n >= 1, a(n) = (-1)^(n)charpoly(A,-2). - Milan Janjic, Jul 08 2010
a(n) = D^(n+1)(x*exp(x)) evaluated at x = 0, where D is the operator (1+x)*d/dx. Cf. A003128, A052852 and A009737. - Peter Bala, Nov 25 2011
From Sergei N. Gladkovskii, Oct 11 2012 to Jan 26 2014: (Start)
Continued fractions:
G.f.: 1/U(0) where U(k) = 1 - x*(k+3) - x^2*(k+1)/U(k+1).
G.f.: 1/(U(0)-x) where U(k) = 1 - x - x*(k+1)/(1 - x/U(k+1)).
G.f.: G(0)/(1-x) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k+2*x-1) - x*(2*k+1)*(2*k+3)*(2*x*k+2*x-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k+3*x-1)/G(k+1) )).
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-2*x-k*x)/(1-x/(x-1/G(k+1) )).
G.f.: -G(0)/x where G(k) = 1 - 1/(1-k*x-x)/(1-x/(x-1/G(k+1) )).
G.f.: 1 - 2/x + (1/x-1)*S where S = sum(k>=0, ( 1 + (1-x)/(1-x-x*k) )*(x/(1-x))^k / prod(i=0..k-1, (1-x-x*i)/(1-x) ) ).
G.f.: (1-x)/x/(G(0)-x) - 1/x where G(k) = 1 - x*(k+1)/(1 - x/G(k+1) ).
G.f.: (1/G(0) - 1)/x^3 where G(k) = 1 - x/(x - 1/(1 + 1/(x*k-1)/G(k+1) )).
G.f.: 1/Q(0), where Q(k)= 1 - 2*x - x/(1 - x*(k+1)/Q(k+1)).
G.f.: G(0)/(1-3*x), where G(k) = 1 - x^2*(k+1)/( x^2*(k+1) - (1 - x*(k+3))*(1 - x*(k+4))/G(k+1) ). (End)
a(n) ~ exp(n/LambertW(n) + 3*LambertW(n)/2 - n - 1) * n^(n + 1/2) / LambertW(n)^(n+1). - Vaclav Kotesovec, Jun 09 2020
a(0) = 1; a(n) = 2 * a(n-1) + Sum_{k=0..n-1} binomial(n-1,k) * a(k). - Ilya Gutkovskiy, Jul 02 2020
a(n) ~ n^2 * Bell(n) / LambertW(n)^2 * (1 - LambertW(n)/n). - Vaclav Kotesovec, Jul 28 2021
a(n) = Sum_{k=0..n} 3^k*A124323(n, k). - Mélika Tebni, Jun 02 2022

Extensions

Definition revised by David Callan, Oct 11 2005

A296372 Triangle read by rows: T(n,k) is the number of normal sequences of length n whose standard factorization into Lyndon words (aperiodic necklaces) has k factors.

Original entry on oeis.org

1, 1, 2, 4, 5, 4, 18, 31, 18, 8, 108, 208, 153, 56, 16, 778, 1700, 1397, 616, 160, 32, 6756, 15980, 14668, 7197, 2196, 432, 64, 68220, 172326, 171976, 93293, 31564, 7208, 1120, 128
Offset: 1

Views

Author

Gus Wiseman, Dec 11 2017

Keywords

Comments

A finite sequence is normal if its union is an initial interval of positive integers.

Examples

			The T(3,2) = 5 normal sequences are {2,1,2}, {1,2,1}, {2,1,3}, {2,3,1}, {3,1,2}.
Triangle begins:
     1;
     1,     2;
     4,     5,     4;
    18,    31,    18,     8;
   108,   208,   153,    56,    16;
   778,  1700,  1397,   616,   160,    32;
  6756, 15980, 14668,  7197,  2196,   432,    64;
		

Crossrefs

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    aperQ[q_]:=UnsameQ@@Table[RotateRight[q,k],{k,Length[q]}];
    qit[q_]:=If[#===Length[q],{q},Prepend[qit[Drop[q,#]],Take[q,#]]]&[Max@@Select[Range[Length[q]],neckQ[Take[q,#]]&&aperQ[Take[q,#]]&]];
    allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Length[Select[Join@@Permutations/@allnorm[n],Length[qit[#]]===k&]],{n,5},{k,n}]
  • PARI
    \\ here U(n,k) is A074650(n,k).
    EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)}
    U(n,k)={sumdiv(n, d, moebius(n/d) * k^d)/n}
    A(n)={[Vecrev(p/y) | p<-sum(k=1, n, EulerMT(vector(n, n, y*U(n,k)))*sum(j=k, n, (-1)^(k-j)*binomial(j,k)))]}
    { my(T=A(10)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Dec 08 2018

Extensions

Example and program corrected by Gus Wiseman, Dec 08 2018

A069321 Stirling transform of A001563: a(0) = 1 and a(n) = Sum_{k=1..n} Stirling2(n,k)*k*k! for n >= 1.

Original entry on oeis.org

1, 1, 5, 31, 233, 2071, 21305, 249271, 3270713, 47580151, 760192505, 13234467511, 249383390393, 5057242311031, 109820924003705, 2542685745501751, 62527556173577273, 1627581948113854711, 44708026328035782905, 1292443104462527895991, 39223568601129844839353
Offset: 0

Views

Author

Karol A. Penson, Mar 14 2002

Keywords

Comments

The number of compatible bipartitions of a set of cardinality n for which at least one subset is not underlined. E.g., for n=2 there are 5 such bipartitions: {1 2}, {1}{2}, {2}{1}, {1}{2}, {2}{1}. A005649 is the number of bipartitions of a set of cardinality n. A000670 is the number of bipartitions of a set of cardinality n with none of the subsets underlined. - Kyle Petersen, Mar 31 2005
a(n) is the cardinality of the image set summed over "all surjections". All surjections means: onto functions f:{1, 2, ..., n} -> {1, 2, ..., k} for every k, 1 <= k <= n. a(n) = Sum_{k=1..n} A019538(n, k)*k. - Geoffrey Critzer, Nov 12 2012
From Gus Wiseman, Jan 15 2022: (Start)
For n > 1, also the number of finite sequences of length n + 1 covering an initial interval of positive integers with at least two adjacent equal parts, or non-anti-run patterns, ranked by the intersection of A348612 and A333217. The complement is counted by A005649. For example, the a(3) = 31 patterns, grouped by sum, are:
(1111) (1222) (1122) (1112) (1233) (1223)
(2122) (1221) (1121) (1332) (1322)
(2212) (2112) (1211) (2133) (2213)
(2221) (2211) (2111) (2331) (2231)
(1123) (3312) (3122)
(1132) (3321) (3221)
(2113)
(2311)
(3112)
(3211)
Also the number of ordered set partitions of {1,...,n + 1} with two successive vertices together in some block.
(End)

Crossrefs

The complement is counted by A005649.
A version for permutations of prime indices is A336107.
A version for factorizations is A348616.
Dominated (n > 1) by A350252, complement A345194, compositions A345192.
A000670 = patterns, ranked by A333217.
A001250 = alternating permutations, complement A348615.
A003242 = anti-run compositions, ranked by A333489.
A019536 = necklace patterns.
A226316 = patterns avoiding (1,2,3), weakly A052709, complement A335515.
A261983 = not-anti-run compositions, ranked by A348612.
A333381 = anti-runs of standard compositions.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-j)*binomial(n, j), j=1..n))
        end:
    a:= n-> `if`(n=0, 2, b(n+1)-b(n))/2:
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 02 2018
  • Mathematica
    max = 20; t = Sum[n^(n - 1)x^n/n!, {n, 1, max}]; Range[0, max]!CoefficientList[Series[D[1/(1 - y(Exp[x] - 1)), y] /. y -> 1, {x, 0, max}], x] (* Geoffrey Critzer, Nov 12 2012 *)
    Prepend[Table[Sum[StirlingS2[n, k]*k*k!, {k, n}], {n, 18}], 1] (* Michael De Vlieger, Jan 03 2016 *)
    a[n_] := (PolyLog[-n-1, 1/2] - PolyLog[-n, 1/2])/4; a[0] = 1; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 30 2016 *)
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],MemberQ[Differences[#],0]&]],{n,0,8}] (* Gus Wiseman, Jan 15 2022 *)
  • PARI
    {a(n)=polcoeff(1+sum(m=1, n, (2*m-1)!/(m-1)!*x^m/prod(k=1, m, 1+(m+k-1)*x+x*O(x^n))), n)} \\ Paul D. Hanna, Oct 28 2013

Formula

Representation as an infinite series: a(0) = 1 and a(n) = Sum_{k>=2} (k^n*(k-1)/(2^k))/4 for n >= 1. This is a Dobinski-type summation formula.
E.g.f.: (exp(x) - 1)/((2 - exp(x))^2).
a(n) = (1/2)*(A000670(n+1) - A000670(n)).
O.g.f.: 1 + Sum_{n >= 1} (2*n-1)!/(n-1)! * x^n / (Product_{k=1..n} (1 + (n + k - 1)*x)). - Paul D. Hanna, Oct 28 2013
a(n) = (A000629(n+1) - A000629(n))/4. - Benoit Cloitre, Oct 20 2002
a(n) = A232472(n-1)/2. - Vincenzo Librandi, Jan 03 2016
a(n) ~ n! * n / (4 * (log(2))^(n+2)). - Vaclav Kotesovec, Jul 01 2018
a(n > 0) = A000607(n + 1) - A005649(n). - Gus Wiseman, Jan 15 2022

A296373 Triangle T(n,k) = number of compositions of n whose factorization into Lyndon words (aperiodic necklaces) is of length k.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 6, 5, 3, 1, 1, 9, 12, 6, 3, 1, 1, 18, 21, 14, 6, 3, 1, 1, 30, 45, 27, 15, 6, 3, 1, 1, 56, 84, 61, 29, 15, 6, 3, 1, 1, 99, 170, 120, 67, 30, 15, 6, 3, 1, 1, 186, 323, 254, 136, 69, 30, 15, 6, 3, 1, 1, 335, 640, 510, 295, 142, 70, 30, 15, 6, 3, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 11 2017

Keywords

Examples

			Triangle begins:
    1;
    1,   1;
    2,   1,   1;
    3,   3,   1,   1;
    6,   5,   3,   1,   1;
    9,  12,   6,   3,   1,   1;
   18,  21,  14,   6,   3,   1,   1;
   30,  45,  27,  15,   6,   3,   1,   1;
   56,  84,  61,  29,  15,   6,   3,   1,   1;
   99, 170, 120,  67,  30,  15,   6,   3,   1,   1;
  186, 323, 254, 136,  69,  30,  15,   6,   3,   1,   1;
  335, 640, 510, 295, 142,  70,  30,  15,   6,   3,   1,   1;
		

Crossrefs

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{RotateRight[q,#],q}]&,Length[q]-1,1,And];
    aperQ[q_]:=UnsameQ@@Table[RotateRight[q,k],{k,Length[q]}];
    qit[q_]:=If[#===Length[q],{q},Prepend[qit[Drop[q,#]],Take[q,#]]]&[Max@@Select[Range[Length[q]],neckQ[Take[q,#]]&&aperQ[Take[q,#]]&]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[qit[#]]===k&]],{n,12},{k,n}]
  • PARI
    EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)}
    A(n)=[Vecrev(p/y) | p<-EulerMT(y*vector(n, n, sumdiv(n, d, moebius(n/d) * (2^d-1))/n))]
    { my(T=A(12)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Dec 01 2018

Formula

First column is A059966.

A232473 3-Fubini numbers.

Original entry on oeis.org

6, 42, 342, 3210, 34326, 413322, 5544342, 82077450, 1330064406, 23428165002, 445828910742, 9116951060490, 199412878763286, 4646087794988682, 114884369365147542, 3005053671533400330, 82905724863616146966, 2406054103612912660362, 73277364784409578094742, 2336825320400166931304970
Offset: 3

Views

Author

N. J. A. Sloane, Nov 27 2013

Keywords

Crossrefs

Programs

  • Magma
    r:=3; r_Fubini:=func;
    [r_Fubini(n, r): n in [r..22]]; // Bruno Berselli, Mar 30 2016
  • Maple
    # r-Stirling numbers of second kind (e.g. A008277, A143494, A143495):
    T := (n,k,r) -> (1/(k-r)!)*add ((-1)^(k+i+r)*binomial(k-r,i)*(i+r)^(n-r),i = 0..k-r):
    # r-Bell numbers (e.g. A000110, A005493, A005494):
    B := (n,r) -> add(T(n,k,r),k=r..n);
    SB := r -> [seq(B(n,r),n=r..30)];
    SB(2);
    # r-Fubini numbers (e.g. A000670, A232472, A232473, A232474):
    F := (n,r) -> add((k)!*T(n,k,r),k=r..n);
    SF := r -> [seq(F(n,r),n=r..30)];
    SF(3);
  • Mathematica
    Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Table[Fubini[n, 3], {n, 3, 22}] (* Jean-François Alcover, Mar 30 2016 *)

Formula

From Peter Bala, Dec 16 2020: (Start)
a(n+3) = Sum_{k = 0..n} (k+3)!/k!*( Sum{i = 0..k} (-1)^(k-i)*binomial(k,i)*(i+3)^n ).
a(n+3) = Sum_{k = 0..n} 3^(n-k)*binomial(n,k)*( Sum_{i = 0..k} Stirling2(k,i)*(i+3)! ).
E.g.f. with offset 0: 6*exp(3*z)/(2 - exp(z))^4 = 6 + 42*z + 342*z^2/2! + 3210*z^3/3! + .... (End)
a(n) ~ n! / (2 * log(2)^(n+1)). - Vaclav Kotesovec, Dec 17 2020

A232474 4-Fubini numbers.

Original entry on oeis.org

24, 216, 2184, 24696, 310344, 4304376, 65444424, 1083832056, 19437971784, 375544415736, 7779464328264, 172062025581816, 4047849158698824, 100946105980181496, 2660400563437957704, 73890563849015945976, 2157336929022064219464, 66059202473570840113656, 2116993226046938197020744
Offset: 4

Views

Author

N. J. A. Sloane, Nov 27 2013

Keywords

Crossrefs

Programs

  • Magma
    r:=4; r_Fubini:=func;
    [r_Fubini(n, r): n in [r..22]]; // Bruno Berselli, Mar 30 2016
  • Maple
    # r-Stirling numbers of second kind (e.g. A008277, A143494, A143495):
    T := (n,k,r) -> (1/(k-r)!)*add ((-1)^(k+i+r)*binomial(k-r,i)*(i+r)^(n-r),i = 0..k-r):
    # r-Bell numbers (e.g. A000110, A005493, A005494):
    B := (n,r) -> add(T(n,k,r),k=r..n);
    SB := r -> [seq(B(n,r),n=r..30)];
    SB(2);
    # r-Fubini numbers (e.g. A000670, A232472, A232473, A232474):
    F := (n,r) -> add((k)!*T(n,k,r),k=r..n);
    SF := r -> [seq(F(n,r),n=r..30)];
    SF(4);
  • Mathematica
    Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Table[Fubini[n, 4], {n, 4, 22}] (* Jean-François Alcover, Mar 30 2016 *)

Formula

From Peter Bala, Dec 16 2020: (Start)
a(n+4) = Sum_{k = 0..n} (k+4)!/k!*( Sum{i = 0..k} (-1)^(k-i)*binomial(k,i)*(i+4)^n ).
a(n+4) = Sum_{k = 0..n} 4^(n-k)*binomial(n,k)*( Sum_{i = 0..k} Stirling2(k,i)*(i+4)! ).
E.g.f. with offset 0: 24*exp(4*z)/(2 - exp(z))^5 = 24 + 216*z + 2184*z^2/2! + 24696*z^3/3! + .... (End)
a(n) ~ n! / (2 * log(2)^(n+1)). - Vaclav Kotesovec, Dec 17 2020

A122101 T(n,k) = Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*A000670(n-k+i).

Original entry on oeis.org

1, 1, 0, 3, 2, 2, 13, 10, 8, 6, 75, 62, 52, 44, 38, 541, 466, 404, 352, 308, 270, 4683, 4142, 3676, 3272, 2920, 2612, 2342, 47293, 42610, 38468, 34792, 31520, 28600, 25988, 23646, 545835, 498542, 455932, 417464, 382672, 351152, 322552, 296564, 272918
Offset: 0

Views

Author

Vladeta Jovovic, Oct 18 2006

Keywords

Examples

			Triangle begins as:
     1;
     1,    0;
     3,    2,    2;
    13,   10,    8,    6;
    75,   62,   52,   44,   38;
   541,  466,  404,  352,  308,  270;
  4683, 4142, 3676, 3272, 2920, 2612, 2342;
  ...
		

Crossrefs

Columns k=0-1 give: A000670, A232472.
Row sums give A089677(n+1).
Main diagonal gives A052841.
T(2n,n) gives A340837.

Programs

  • GAP
    A000670:= function(n)
         return Sum([0..n], i-> Factorial(i)*Stirling2(n,i) ); end;
    T:= function(n,k)
        return Sum([0..k], j-> (-1)^(k-j)*Binomial(k, j)*A000670(n-k+j) ); end;
    Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Oct 02 2019
  • Magma
    A000670:= func< n | &+[Factorial(k)*StirlingSecond(n,k): k in [0..n]] >;
    [(&+[(-1)^(k-j)*Binomial(k,j)*A000670(n-k+j): j in [0..k]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 02 2019
    
  • Maple
    T:= (n, k)-> k!*(n-k)!*coeff(series(coeff(series(exp(-y)/
            (2-exp(x+y)), y, k+1), y, k), x, n-k+1), x, n-k):
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Oct 02 2019
    # second Maple program:
    b:= proc(n) option remember; `if`(n<2, 1,
          add(b(n-j)*binomial(n, j), j=1..n))
        end:
    T:= (n, k)-> add(binomial(k, j)*(-1)^j*b(n-j), j=0..k):
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Oct 02 2019
  • Mathematica
    A000670[n_]:= If[n==0,1,Sum[k! StirlingS2[n, k], {k, n}]]; T[n_, k_]:= Sum[(-1)^(k-j)*Binomial[k, j]*A000670[n-k+j], {j,0,k}]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 02 2019 *)
  • PARI
    A000670(n) = sum(k=0,n, k!*stirling(n,k,2));
    T(n,k) = sum(j=0,k, (-1)^(k-j)*binomial(k, j)*A000670(n-k+j));
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 02 2019
    
  • Sage
    def A000670(n): return sum(factorial(k)*stirling_number2(n,k) for k in (0..n))
    def T(n,k): return sum((-1)^(k-j)*binomial(k, j)*A000670(n-k+j) for j in (0..k))
    [[T(n,k) for k in (0..n)] for n in (0..10)]
    

Formula

Doubly-exponential generating function: Sum_{n, k} a(n-k,k) x^n/n! y^k/k! = exp(-y)/(2-exp(x+y)).

A338875 Array T(n, m) read by ascending antidiagonals: numerators of shifted Fubini numbers F(n, m) where m >= 0.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 13, 5, 1, 1, 75, 2, 5, 1, 1, 541, 191, 29, 29, 1, 1, 4683, 76, 263, 149, 7, 1, 1, 47293, 5081, 4157, 24967, 2687, 727, 1, 1, 545835, 674, 93881, 115567, 44027, 66247, 631, 1, 1, 7087261, 386237, 21209, 377909, 31627, 37728769, 354061, 4481, 1, 1
Offset: 0

Views

Author

Stefano Spezia, Dec 25 2020

Keywords

Examples

			Array T(n, m):
n\m|   0       1       2       3 ...
---+--------------------------------
0  |   1       1       1       1 ...
1  |   1       1       1       1 ...
2  |   3       5       5      29 ...
3  |  13       2      29     149 ...
...
Related table of shifted Fubini numbers F(n, m):
   1   1      1         1 ...
   1 1/2    1/6      1/24 ...
   3 5/6   5/36   29/1440 ...
  13   2 29/180 149/11520 ...
  ...
		

Crossrefs

Cf. A000012 (n = 0 and n = 1), A000670 (m = 0), A226513 (high-order Fubini numbers), A232472, A232473, A232474, A257565, A338873, A338874.
Cf. A338876 (denominators).

Programs

  • Mathematica
    F[n_,m_]:=n!Coefficient[Series[x^m/(x^m-Exp[x]+Sum[x^k/k!,{k,0,m}]),{x,0,n}],x,n]; Table[Numerator[F[n-m,m]],{n,0,9},{m,0,n}]//Flatten
  • PARI
    tm(n, m) = {my(m = matrix(n, n, i, j, if (i==1, if (j==1, 1/(m + 1)!, if (j==2, 1)), if (j==1, (-1)^(i+1)/(m + i)!)))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m; }
    T(n, m) = numerator(n!*matdet(tm(n, m))); \\ Michel Marcus, Dec 31 2020

Formula

T(n, m) = numerator(F(n, m)).
F(n, m) = n!*det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in 1/(m + 1)!, 1, 0, ..., 0 and whose first column consists in 1/(m + 1)!, -1/(m + 2)!, ..., (-1)^(n-1)/(m + n)! (see Proposition 5.1 in Komatsu).
F(n, m) = n!*Sum_{k=0..n-1} F(k, m)/((n - k + m)!*k!) for n > 0 and m >= 0 with F(0, m) = 1 (see Lemma 5.2).
F(n, m) = [x^n] n!*x^m/(x^m - exp(x) + E_m(x)), where E_m(x) = Sum_{n=0..m} x^n/n! (see Theorem 5.3 in Komatsu).
F(n, m) = n!*Sum_{k=1..n} Sum_{i_1+...+i_k=n, i_1,...,i_k>=1} Product_{j=1..k} 1/(i_j + m)! for n > 0 and m >= 0 (see Theorem 5.4).
F(1, m) = 1/(m + 1)! (see Theorem 5.5 in Komatsu).
F(n, m) = n!*Sum_{t_1+2*t_2+...+n*t_n=n} (t_1,...,t_n)!*(-1)^(n-t_1-...-t_n)*Product_{j=1..n} (1/(m + j)!)^t_j for n >= m >= 1 (see Theorem 5.7 in Komatsu).
(-1)^(n-1)/(n + m)! = det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in F(1, m), 1, 0, ..., 0 and whose first column consists in F(1, m), F(2, m)/2!, ..., F(n, m)/n! for n > 0 (see Theorem 5.8 in Komatsu).
Sum_{k=0..n} binomial(n, k)*F(k, m)*F(n-k, m) = - n!/(m^2*m!)*Sum_{l=0..n-1} ((m! + 1)/(m*m!))^(n-l-1)*(l*(m! + 1) - m)/l!*F(l, m) - (n - m)/m*F(n, m) for m > 0 (see Theorem 5.11 in Komatsu).

A338876 Array T(n, m) read by ascending antidiagonals: denominators of shifted Fubini numbers F(n, m) where m >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 1, 36, 24, 1, 1, 30, 180, 1440, 120, 1, 1, 3, 1080, 11520, 2400, 720, 1, 1, 42, 9072, 2419200, 2016000, 1814400, 5040, 1, 1, 1, 90720, 11612160, 60480000, 435456000, 12700800, 40320, 1, 1, 90, 7776, 33177600, 69120000, 548674560000, 21337344000, 812851200, 362880, 1
Offset: 0

Views

Author

Stefano Spezia, Dec 25 2020

Keywords

Examples

			Array T(n, m):
n\m|   0       1       2       3 ...
---+--------------------------------
0  |   1       1       1       1 ...
1  |   1       2       6      24 ...
2  |   1       6      36    1440 ...
3  |   1       1     180   11520 ...
...
Related table of shifted Fubini numbers F(n, m):
   1   1      1         1 ...
   1 1/2    1/6      1/24 ...
   3 5/6   5/36   29/1440 ...
  13   2 29/180 149/11520 ...
  ...
		

Crossrefs

Cf. A000012 (n = 0 or m = 0), A000142, A000670, A226513 (high-order Fubini numbers), A232472, A232473, A232474, A257565, A338873, A338874.
Cf. A338875 (numerators).

Programs

  • Mathematica
    F[n_,m_]:=n!Coefficient[Series[x^m/(x^m-Exp[x]+Sum[x^k/k!,{k,0,m}]),{x,0,n}],x,n]; Table[Denominator[F[n-m,m]],{n,0,9},{m,0,n}]//Flatten
  • PARI
    tm(n, m) = {my(m = matrix(n, n, i, j, if (i==1, if (j==1, 1/(m + 1)!, if (j==2, 1)), if (j==1, (-1)^(i+1)/(m + i)!)))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m; }
    T(n, m) = denominator(n!*matdet(tm(n, m))); \\ Michel Marcus, Dec 31 2020

Formula

T(n, m) = denominator(F(n, m)).
F(n, m) = n!*det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in 1/(m + 1)!, 1, 0, ..., 0 and whose first column consists in 1/(m + 1)!, -1/(m + 2)!, ..., (-1)^(n-1)/(m + n)! (see Proposition 5.1 in Komatsu).
F(n, m) = n!*Sum_{k=0..n-1} F(k, m)/((n - k + m)!*k!) for n > 0 and m >= 0 with F(0, m) = 1 (see Lemma 5.2).
F(n, m) = [x^n] n!*x^m/(x^m - exp(x) + E_m(x)), where E_m(x) = Sum_{n=0..m} x^n/n! (see Theorem 5.3 in Komatsu).
F(n, m) = n!*Sum_{k=1..n} Sum_{i_1+...+i_k=n, i_1,...,i_k>=1} Product_{j=1..k} 1/(i_j + m)! for n > 0 and m >= 0 (see Theorem 5.4).
F(1, m) = 1/(m + 1)! (see Theorem 5.5 in Komatsu).
F(n, m) = n!*Sum_{t_1+2*t_2+...+n*t_n=n} (t_1,...,t_n)!*(-1)^(n-t_1-...-t_n)*Product_{j=1..n} (1/(m + j)!)^t_j for n >= m >= 1 (see Theorem 5.7 in Komatsu).
(-1)^(n-1)/(n + m)! = det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in F(1, m), 1, 0, ..., 0 and whose first column consists in F(1, m), F(2, m)/2!, ..., F(n, m)/n! for n > 0 (see Theorem 5.8 in Komatsu).
Sum_{k=0..n} binomial(n, k)*F(k, m)*F(n-k, m) = - n!/(m^2*m!)*Sum_{l=0..n-1} ((m! + 1)/(m*m!))^(n-l-1)*(l*(m! + 1) - m)/l!*F(l, m) - (n - m)/m*F(n, m) for m > 0 (see Theorem 5.11 in Komatsu).
Showing 1-9 of 9 results.