Original entry on oeis.org
1, 6, 30, 148, 755, 4044, 22841, 136056, 853452, 5625950, 38885297, 281170080, 2122313505, 16688829122, 136457754030, 1158155642512, 10186602918035, 92711977180164, 871936904575985, 8462913158427580, 84668764368102012, 872196382566014506, 9241557859113581689
Offset: 0
a(n) = sum of terms in n-th row of A127740. a(2) = 30 = (6 + 9 + 15).
-
lim=24;A005493=Differences[BellB[Range[lim]]];Array[(#+1)*A005493[[#+1]]&,lim-1,0] (* James C. McMahon, Jan 02 2025 *)
-
# requires Python 3.2 or higher. Otherwise use def'n of accumulate in Python docs.
from itertools import accumulate
A127741_list, blist, b = [], [1], 1
for n in range(1,1001):
blist = list(accumulate([b]+blist))
b = blist[-1]
A127741_list.append(blist[-2]*n) # Chai Wah Wu, Sep 20 2014
Original entry on oeis.org
1, 2, 1, 4, 3, 3, 8, 7, 12, 10, 16, 15, 33, 50, 37, 32, 31, 78, 160, 222, 151, 64, 63, 171, 420, 814, 1057, 674, 128, 127, 360, 990, 2368, 4379, 5392, 3263, 256, 255, 741, 2190, 6031, 14043, 24938, 29367, 17007, 512, 511, 1506, 4660, 14134, 38656, 87620
Offset: 0
First few rows of the triangle =
1;
2, 1;
4, 3, 3;
8, 7, 12, 10;
16, 15, 33, 50, 37;
32, 31, 78, 160, 222, 151;
64, 63, 171, 420, 814, 1057, 674;
128, 127, 360, 990, 2368, 4379, 5392, 3263;
256, 255, 741, 2190, 6031, 14043, 24938, 29367, 17007;
512, 511, 1506, 4660, 14134, 38656, 87620, 150098, 170070, 94828;
1024, 1023, 3039, 9680, 31376, 96338, 260164, 574288, 952392, 1043108, 562595;
...
Example: row 3 = (8, 7, 12, 10) = termwise products of (8, 7, 4, 1) and
(1, 1, 3, 10), where (8, 7, 12, 10) = row 3 of triangle A055248.
A091046
Stirling transform of first differences of Bell numbers (A005493), if offset zero: a(n) = Sum_{k=1..n} A008277(n,k)*A005493(k).
Original entry on oeis.org
1, 4, 20, 119, 817, 6338, 54707, 519184, 5366097, 59934937, 718748131, 9203953921, 125268224954, 1804750726306, 27426230051634, 438260834123607, 7343677070172330, 128716143768613600, 2354633702684629141, 44865189679858465163, 888784065003104357924
Offset: 1
-
s:= proc(n) option remember; expand(`if`(n=0, 1,
x*add(s(n-j)*binomial(n-1, j-1), j=1..n)))
end:
S:= proc(n, k) option remember; coeff(s(n), x, k) end:
b:= proc(n, k) option remember; `if`(k=0, n,
add(S(n, j)*b(j, k-1), j=0..n))
end:
a:= n-> b(n, 2):
seq(a(n), n=1..23); # Alois P. Heinz, Aug 24 2021
-
len = 23;
Array[StirlingS2, {len, len}].Differences[Array[BellB, len+1]] (* Jean-François Alcover, Apr 25 2022 *)
A000178
Superfactorials: product of first n factorials.
Original entry on oeis.org
1, 1, 2, 12, 288, 34560, 24883200, 125411328000, 5056584744960000, 1834933472251084800000, 6658606584104736522240000000, 265790267296391946810949632000000000, 127313963299399416749559771247411200000000000, 792786697595796795607377086400871488552960000000000000
Offset: 0
a(3) = (1/6)* | 1 1 1 | 2 4 8 | 3 9 27 |
a(7) = n! * a(n-1) = 7! * 24883200 = 125411328000.
a(12) = 1! * 2! * 3! * 4! * 5! * 6! * 7! * 8! * 9! * 10! * 11! * 12!
= 1^12 * 2^11 * 3^10 * 4^9 * 5^8 * 6^7 * 7^6 * 8^5 * 9^4 * 10^3 * 11^2 * 12^1
= 2^56 * 3^26 * 5^11 * 7^6 * 11^2.
G.f. = 1 + x + 2*x^2 + 12*x^3 + 288*x^4 + 34560*x^5 + 24883200*x^6 + ...
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 545.
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 135-145.
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 231.
- H. J. Ryser, Combinatorial Mathematics. Mathematical Association of America, Carus Mathematical Monograph 14, 1963, p. 53.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics, Springer, 1999.
- Boris Hostnik, Table of n, a(n) for n = 0..46
- Christian Aebi and Grant Cairns, Generalizations of Wilson's Theorem for Double-, Hyper-, Sub-and Superfactorials, The American Mathematical Monthly 122.5 (2015): 433-443.
- Andreas B. G. Blobel, On convolution powers of 1/x, arXiv:2203.09519 [math.CO], 2022.
- E. F. Cornelius, Jr. and Phill Schultz, Polynomial points , Journal of Integer Sequences, Vol. 10 (2007), Article 07.3.6.
- Selden Crary, Factorization of the Determinant of the Gaussian-Covariance Matrix of Evenly Spaced Points Using an Inter-dimensional Multiset Duality, arXiv preprint arXiv:1406.6326 [math.ST], 2014-2019.
- N. Destainville, R. Mosseri and F. Bailly, Configurational Entropy of Codimension-One Tilings and Directed Membranes, J. Stat. Phys. 87, Nos 3/4, 697 (1997).
- J. East and R. D. Gray, Idempotent generators in finite partition monoids and related semigroups, arXiv preprint arXiv:1404.2359 [math.GR], 2014.
- Richard Ehrenborg, The Hankel determinant of exponential polynomials, Amer. Math. Monthly, 107 (2000), 557-560.
- William Q. Erickson and Jan Kretschmann, The structure and normalized volume of Monge polytopes, arXiv:2311.07522 [math.CO], 2023. See p. 7.
- Steven R. Finch, Glaisher-Kinkelin Constant (gives asymptotic expressions for A002109, A000178) [Broken link]
- Steven R. Finch, Glaisher-Kinkelin Constant (gives asymptotic expressions for A002109, A000178) [From the Wayback machine]
- Shyam Sunder Gupta, Fascinating Factorials, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 16, 411-442.
- Ivan Gutman, Wolfgang Linert, István Lukovits and Željko Tomović, The multiplicative version of the Wiener index, J. Chem. Inf. Comput. Sci., Vol. 40, No. 1 (2000), pp. 113-116.
- Brady Haran and Sophie Maclean, What's special about 288?, Numberphile video (2023).
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Nick Hobson, Python program for this sequence.
- A. M. Ibrahim, Extension of factorial concept to negative numbers, Notes on Number Theory and Discrete Mathematics, Vol. 19, 2013, 2, 30-42.
- Pavel L. Krapivsky, Jean-Marc Luck and Kirone Mallick, Quantum return probability of a system of N non-interacting lattice fermions, Journal of Statistical Mechanics: Theory and Experiment, Vol. 2018, No. 2 (2018), 023104; arXiv preprint, arXiv:1710.08178 [cond-mat.mes-hall], 2017-2018.
- Jeffrey C. Lagarias and Harsh Mehta, Products of binomial coefficients and unreduced Farey fractions, International Journal of Number Theory, Vol. 12, No. 1 (2016), pp. 57-91; arXiv preprint, arXiv:1409.4145 [math.NT], 2014-2015.
- Mogens Esrom Larsen, Wronskian Harmony, Mathematics Magazine, vol. 63, no. 1, 1990, pp. 33-37.
- John W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- Rick Mabry and Laura McCormick, Square products of punctured sequences of factorials, Gaz. Aust. Math. Soc., 2009.
- Rémy Mosseri and Francis Bailly, Configurational Entropy in Octagonal Tiling Models, Int. J. Mod. Phys. B, Vol. 7, No. 6-7 (1993), pp. 1427-1436.
- Rémy Mosseri, F. Bailly and C. Sire, Configurational Entropy in Random Tiling Models, J. Non-Cryst. Solids, Vol. 153-154 (1993), pp. 201-204.
- Amarnath Murthy, Miscellaneous Results and Theorems on Smarandache terms and factor partitions, Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
- Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 3.14.
- Christian Radoux, Query 145, Notices Amer. Math. Soc., 25-3 (1978), p. 197.
- Christian Radoux, Déterminants de Hankel et théorème de Sylvester, Séminaire Lotharingien de Combinatoire, B28b (1992), 9 pp.
- Vignesh Raman, The Generalized Superfactorial, Hyperfactorial and Primorial functions, arXiv:2012.00882 [math.NT], 2020.
- Michel Waldschmidt, Schanuel Property for Elliptic and Quasi-Elliptic Functions, arXiv:2504.14041 [math.NT], 2025. Mentions this sequence, see p. 10.
- Eric Weisstein's World of Mathematics, Barnes G-Function.
- Eric Weisstein's World of Mathematics, Bell Number.
- Eric Weisstein's World of Mathematics, Factorial Products.
- Eric Weisstein's World of Mathematics, Graph Automorphism.
- Eric Weisstein's World of Mathematics, Lucas Sequence.
- Eric Weisstein's World of Mathematics, Superfactorial.
- Eric Weisstein's World of Mathematics, Vandermonde Determinant.
- Index to divisibility sequences.
- Index entries for sequences related to factorial numbers.
- Index to sequences related to Olympiads and other Mathematical competitions.
Cf.
A002109,
A036561,
A000292,
A098694,
A098695,
A113271,
A087316,
A113208,
A113231,
A113257,
A113258,
A113320,
A113336,
A113498,
A113173,
A113170,
A113475,
A113492,
A113497,
A113533,
A113534,
A113535,
A113153,
A113154,
A113122,
A114045,
A055462,
A137986,
A137987.
-
[&*[Factorial(k): k in [0..n]]: n in [0..20]]; // Bruno Berselli, Mar 11 2015
-
A000178 := proc(n)
mul(i!,i=1..n) ;
end proc:
seq(A000178(n),n=0..10) ; # R. J. Mathar, Oct 30 2015
-
a[0] := 1; a[1] := 1; a[n_] := n!*a[n - 1]; Table[a[n], {n, 1, 12}] (* Stefan Steinerberger, Mar 10 2006 *)
Table[BarnesG[n], {n, 2, 14}] (* Zerinvary Lajos, Jul 16 2009 *)
FoldList[Times,1,Range[20]!] (* Harvey P. Dale, Mar 25 2011 *)
RecurrenceTable[{a[n] == n! a[n - 1], a[0] == 1}, a, {n, 0, 12}] (* Ray Chandler, Jul 30 2015 *)
BarnesG[Range[2, 20]] (* Eric W. Weisstein, Jul 14 2017 *)
-
A000178(n):=prod(k!,k,0,n)$ makelist(A000178(n),n,0,30); /* Martin Ettl, Oct 23 2012 */
-
A000178(n)=prod(k=2,n,k!) \\ M. F. Hasler, Sep 02 2007
-
a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/prod(j=1, k+1, (1+j!*x+x*O(x^n)) )), n) \\ Paul D. Hanna, Oct 02 2013
-
for(j=1,13, print1(prod(k=1,j,k^(j-k)),", ")) \\ Hugo Pfoertner, Apr 09 2020
-
A000178_list, n, m = [1], 1,1
for i in range(1,100):
m *= i
n *= m
A000178_list.append(n) # Chai Wah Wu, Aug 21 2015
-
from math import prod
def A000178(n): return prod(i**(n-i+1) for i in range(2,n+1)) # Chai Wah Wu, Nov 26 2023
-
def mono_choices(a,b,n)
n - [a,b].max
end
def comm_mono_choices(n)
accum =1
0.upto(n-1) do |i|
i.upto(n-1) do |j|
accum = accum * mono_choices(i,j,n)
end
end
accum
end
1.upto(12) do |k|
puts comm_mono_choices(k)
end # Chad Brewbaker, Nov 03 2013
A000296
Set partitions without singletons: number of partitions of an n-set into blocks of size > 1. Also number of cyclically spaced (or feasible) partitions.
Original entry on oeis.org
1, 0, 1, 1, 4, 11, 41, 162, 715, 3425, 17722, 98253, 580317, 3633280, 24011157, 166888165, 1216070380, 9264071767, 73600798037, 608476008122, 5224266196935, 46499892038437, 428369924118314, 4078345814329009, 40073660040755337, 405885209254049952, 4232705122975949401
Offset: 0
a(4) = card({{{1, 2}, {3, 4}}, {{1, 4}, {2, 3}}, {{1, 3}, {2, 4}}, {{1, 2, 3, 4}}}) = 4.
- Martin Gardner in Sci. Amer. May 1977.
- D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.5 (p. 436).
- G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 228.
- J. Riordan, A budget of rhyme scheme counts, pp. 455-465 of Second International Conference on Combinatorial Mathematics, New York, April 4-7, 1978. Edited by Allan Gewirtz and Louis V. Quintas. Annals New York Academy of Sciences, 319, 1979.
- J. Shallit, A Triangle for the Bell numbers, in V. E. Hoggatt, Jr. and M. Bicknell-Johnson, A Collection of Manuscripts Related to the Fibonacci Sequence, 1980, pp. 69-71.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..575 (first 101 terms from T. D. Noe)
- Yasemin Alp and E. Gokcen Kocer, Exponential Almost-Riordan Arrays, Results Math. (2024) Vol. 79, 173.
- Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order".
- E. Bach, Random bisection and evolutionary walks, J. Applied Probability, v. 38, pp. 582-596, 2001.
- M. Bauer and O. Golinelli, Random incidence matrices: Moments of the spectral density, arXiv:cond-mat/0007127 [cond-mat.stat-mech], 2000-2001. See Sect. 3.2; J. Stat. Phys. 103, 301-307 (2001).
- H. D. Becker, Solution to problem E 461, American Math Monthly 48 (1941), 701-702.
- F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999) 73-112.
- F. R. Bernhart, Fundamental chromatic numbers, Unpublished. (Annotated scanned copy)
- F. R. Bernhart & N. J. A. Sloane, Correspondence, 1977.
- J. R. Britnell and M. Wildon, Bell numbers, partition moves and the eigenvalues of the random-to-top shuffle in types A, B and D, arXiv 1507.04803 [math.CO], 2015.
- David Callan, On conjugates for set partitions and integer compositions [math.CO].
- Pascal Caron, Jean-Gabriel Luque, Ludovic Mignot, and Bruno Patrou, State complexity of catenation combined with a boolean operation: a unified approach, arXiv preprint arXiv:1505.03474 [cs.FL], 2015.
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 3.
- Éva Czabarka, Péter L. Erdős, Virginia Johnson, Anne Kupczok and László A. Székely, Asymptotically normal distribution of some tree families relevant for phylogenetics, and of partitions without singletons, arXiv preprint arXiv:1108.6015 [math.CO], 2011.
- Gesualdo Delfino and Jacopo Viti, Potts q-color field theory and scaling random cluster model, arXiv preprint arXiv:1104.4323 [hep-th], 2011.
- E. A. Enneking and J. C. Ahuja, Generalized Bell numbers, Fib. Quart., 14 (1976), 67-73.
- Steven R. Finch, Moments of sums, April 23, 2004. [Cached copy, with permission of the author]
- Robert C. Griffiths, P. A. Jenkins, and S. Lessard, A coalescent dual process for a Wright-Fisher diffusion with recombination and its application to haplotype partitioning, arXiv preprint arXiv:1604.04145 [q-bio.PE], 2016.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 16.
- V. P. Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. Southern Calif., 2012.
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- Peter Luschny, Set partitions.
- Gregorio Malajovich, Complexity of sparse polynomial solving: homotopy on toric varieties and the condition metric, arXiv preprint arXiv:1606.03410 [math.NA], 2016.
- Toufik Mansour and Mark Shattuck, A recurrence related to the Bell numbers, INTEGERS 11 (2011), #A67.
- T. Mansour and A. O. Munagi, Set partitions with circular successions, European Journal of Combinatorics, 42 (2014), 207-216.
- I. Mezo, Periodicity of the last digits of some combinatorial sequences, J. Integer Seq. 17, Article 14.1.1, 2014.
- Scott Morrison, Noah Snyder, and Dylan P. Thurston, Towards the quantum exceptional series, arXiv:2402.03637 [math.QA], 2024. See p. 39.
- E. Norton, Symplectic Reflection Algebras in Positive Characteristic as Ore Extensions, arXiv preprint arXiv:1302.5411 [math.RA], 2013.
- Rosa Orellana, Nancy Wallace, and Mike Zabrocki, Quasipartition and planar quasipartition algebras, Sém. Lotharingien Comb., Proc. 36th Conf. Formal Power Series Alg. Comb. (2024) Vol. 91B, Art. No. 50. See p. 7.
- Aleksandar Petojević, Marjana Gorjanac Ranitović, and Milinko Mandić, New equivalents for Kurepa's hypothesis for left factorial, Univ. Novi Sad (2023).
- Tilman Piesk, Table showing non-singleton partitions for n = 1..6.
- R. A. Proctor, Let's Expand Rota's Twelvefold Way for Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- Jocelyn Quaintance and Harris Kwong, A combinatorial interpretation of the Catalan and Bell number difference tables, Integers, 13 (2013), #A29.
- D. Reidenbach and J. C. Schneider, Morphically Primitive Words. In Pierre Arnoux, Nicolas Bedaride and Julien Cassaigne, editors, Proc. 6th International Conference on Words, WORDS 2007, pages 262-272. 2007. [Different from the paper with the same name, referenced below.]
- Daniel Reidenbach and Johannes C. Schneider, Morphically primitive words, (2009). See Table 1.
- Daniel Reidenbach and Johannes C. Schneider, Morphically primitive words, Theoretical Computer Science, (2009), 140 (21-23), pp. 2148-2161.
- J. Riordan, Cached copy of paper.
- Jeffrey Shallit, A Triangle for the Bell numbers, in V. E. Hoggatt, Jr. and M. Bicknell-Johnson, A Collection of Manuscripts Related to the Fibonacci Sequence, 1980, pp. 69-71.
- Index entries for related partition-counting sequences
-
[1,0] cat [ n le 1 select 1 else Bell(n)-Self(n-1) : n in [1..40]]; // Vincenzo Librandi, Jun 22 2015
-
spec := [ B, {B=Set(Set(Z,card>1))}, labeled ]; [seq(combstruct[count](spec, size=n), n=0..30)];
with(combinat): A000296 :=n->(-1)^n + add((-1)^(j-1)*bell(n-j),j=1..n): seq(A000295(n),n=0..30); # Emeric Deutsch, Oct 29 2006
f:=exp(exp(x)-1-x): fser:=series(f, x=0, 31): 1, seq(n!*coeff(fser, x^n), n=1..23); # Zerinvary Lajos, Nov 22 2006
G:={P=Set(Set(Atom,card>=2))}: combstruct[gfsolve](G,unlabeled,x): seq(combstruct[count]([P,G,labeled], size=i), i=0..23); # Zerinvary Lajos, Dec 16 2007
# [a(0),a(1),..,a(n)]
A000296_list := proc(n)
local A, R, i, k;
if n = 0 then return 1 fi;
A := array(0..n-1);
A[0] := 1; R := 1;
for i from 0 to n-2 do
A[i+1] := A[0] - A[i];
A[i] := A[0];
for k from i by -1 to 1 do
A[k-1] := A[k-1] + A[k] od;
R := R,A[i+1];
od;
R,A[0]-A[i] end:
A000296_list(100); # Peter Luschny, Apr 09 2011
-
nn = 25; Range[0, nn]! CoefficientList[Series[Exp[Exp[x] - 1 - x], {x, 0, nn}], x]
(* Second program: *)
a[n_] := a[n] = If[n==0, 1, Sum[Binomial[n-1, i]*a[n-i-1], {i, 1, n-1}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 06 2016, after Vladimir Kruchinin *)
spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:= Join@@Function[s,Prepend[#,s]&/@spsu[ Select[foo,Complement[#, Complement[set,s]]=={}&], Complement[set,s]]]/@Cases[foo,{i,_}];
Table[Length[spsu[Select[Subsets[Range[n]],Select[Partition[Range[n],2,1,1], Function[ed,Complement[ed,#]=={}]]=={}&],Range[n]]],{n,8}] (* Gus Wiseman, Feb 10 2019 *)
s = 1; Join[{1}, Table[s = BellB[n] - s, {n, 0, 25}]] (* Vaclav Kotesovec, Jun 20 2022 *)
-
a(n):=if n=0 then 1 else sum(binomial(n-1,i)*a(n-i-1),i,1,n-1); /* Vladimir Kruchinin, Feb 22 2015 */
-
a(n) = if(n<2, n==0, subst( polinterpolate( Vec( serlaplace( exp( exp( x+O(x^n)/x )-1 ) ) ) ), x, n) )
-
from itertools import accumulate, islice
def A000296_gen():
yield from (1,0)
blist, a, b = (1,), 0, 1
while True:
blist = list(accumulate(blist, initial = (b:=blist[-1])))
yield (a := b-a)
A000296_list = list(islice(A000296_gen(),20)) # Chai Wah Wu, Jun 22 2022
A011971
Aitken's array: triangle of numbers {a(n,k), n >= 0, 0 <= k <= n} read by rows, defined by a(0,0)=1, a(n,0) = a(n-1,n-1), a(n,k) = a(n,k-1) + a(n-1,k-1).
Original entry on oeis.org
1, 1, 2, 2, 3, 5, 5, 7, 10, 15, 15, 20, 27, 37, 52, 52, 67, 87, 114, 151, 203, 203, 255, 322, 409, 523, 674, 877, 877, 1080, 1335, 1657, 2066, 2589, 3263, 4140, 4140, 5017, 6097, 7432, 9089, 11155, 13744, 17007, 21147, 21147, 25287, 30304, 36401, 43833, 52922, 64077, 77821, 94828, 115975
Offset: 0
Triangle begins:
00: 1
01: 1 2
02: 2 3 5
03: 5 7 10 15
04: 15 20 27 37 52
05: 52 67 87 114 151 203
06: 203 255 322 409 523 674 877
07: 877 1080 1335 1657 2066 2589 3263 4140
08: 4140 5017 6097 7432 9089 11155 13744 17007 21147
09: 21147 25287 30304 36401 43833 52922 64077 77821 94828 115975
10: 115975 137122 162409 192713 229114 272947 325869 389946 467767 562595 678570
...
- Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 205.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 212.
- Donald E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.5 (p. 418).
- Charles Sanders Peirce, On the Algebra of Logic, American Journal of Mathematics, Vol. 3, pages 15-57, 1880. Reprinted in Collected Papers (1935-1958) and in Writings of Charles S. Peirce: A Chronological Edition (Indiana University Press, Bloomington, IN, 1986).
- Jeffrey Shallit, A triangle for the Bell numbers, in V. E. Hoggatt, Jr. and M. Bicknell-Johnson, A Collection of Manuscripts Related to the Fibonacci Sequence, 1980, pp. 69-71.
- T. D. Noe and Chai Wah Wu, Rows n = 0..200 of triangle, flattened (rows n = 0..50 from T. D. Noe)
- Alexander Craig Aitken, A problem in combinations, Edinburgh Mathematical Notes, Vol. 28 (1933), pp. xviii-xxiii.
- H. W. Becker, Rooks and rhymes, Math. Mag., Vol. 22, No. 1 (1948/49), pp. 23-26. See Table IV.
- H. W. Becker, Rooks and rhymes, Math. Mag., Vol. 22, No. 1 (1948/49), pp. 23-26. [Annotated scanned copy]
- Antonio Bernini, Mathilde Bouvel and Luca Ferrari, Some statistics on permutations avoiding generalized patterns, PU.M.A. Vol. 18, No. 3-4 (2007), pp. 223-237 (see array p. 228).
- Clarence H. Best, Jerry Griggs, and Ira Gessel, Partitions of finite sets, Advanced Problem 6151, The American Mathematical Monthly, Vol. 86, No. 1 (Jan., 1979), pp. 64-65.
- Robert W. Donley, Jr., Binomial arrays and generalized Vandermonde identities, arXiv:1905.01525 [math.CO], 2019.
- Martin Cohn, Shimon Even, Karl Menger, Jr. and Philip K. Hooper, On the Number of Partitionings of a Set of n Distinct Objects, Amer. Math. Monthly, Vol. 69, No. 8 (1962), pp. 782-785. MR1531841.
- Martin Cohn, Shimon Even, Karl Menger, Jr. and Philip K. Hooper, On the Number of Partitionings of a Set of n Distinct Objects, Amer. Math. Monthly Vol. 69, No. 8 (1962), pp. 782-785. MR1531841. [Annotated scanned copy]
- Dominique Dumont, Matrices d'Euler-Seidel, Sem. Loth. Comb. B05c (1981) 59-78.
- Richard K. Guy, Letters to N. J. A. Sloane, June-August 1968.
- Nick Hobson, Python program for this sequence.
- Don Knuth, Email to N. J. A. Sloane, Jan 29 2018.
- Charles Sanders Peirce, Assorted Papers.
- Charles Sanders Peirce, Collected Papers.
- Charles Sanders Peirce, Published Works.
- Jeffrey Shallit, A triangle for the Bell numbers, in V. E. Hoggatt, Jr. and M. Bicknell-Johnson, A Collection of Manuscripts Related to the Fibonacci Sequence, 1980, pp. 69-71.
- Todd Tichenor, Bounds on graph compositions and the connection to the Bell triangle, Discr. Math., Vol. 339, No. 4 (2016), pp. 1419-1423.
- Eric Weisstein's World of Mathematics, Bell Triangle.
- Denys Wuilquin, Letters to N. J. A. Sloane, August 1984.
-
T:=Flat(List([0..9],n->List([0..n],k->Sum([0..k],i->Binomial(k,i)*Bell(n-k+i))))); # Muniru A Asiru, Oct 26 2018
-
a011971 n k = a011971_tabl !! n !! k
a011971_row n = a011971_tabl !! n
a011971_tabl = iterate (\row -> scanl (+) (last row) row) [1]
-- Reinhard Zumkeller, Dec 09 2012
-
A011971 := proc(n,k) option remember; if n=0 and k=0 then 1 elif k=0 then A011971(n-1,n-1) else A011971(n,k-1)+A011971(n-1,k-1); fi: end;
for n from 0 to 12 do lprint([ seq(A011971(n,k),k=0..n) ]); od:
# Compare the analogue algorithm for the Catalan numbers in A030237.
BellTriangle := proc(len) local P, T, n; P := [1]; T := [[1]];
for n from 1 to len - 1 do P := ListTools:-PartialSums([P[-1], op(P)]);
T := [op(T), P] od; T end:
BellTriangle(6); ListTools:-Flatten(%); # Peter Luschny, Mar 26 2022
-
a[0, 0] = 1; a[n_, 0] := a[n, 0] = a[n-1, n-1]; a[n_, k_] := a[n, k] = a[n, k-1] + a[n-1, k-1]; Flatten[ Table[ a[n, k], {n, 0, 9}, {k, 0, n}]] (* Robert G. Wilson v, Mar 27 2004 *)
Flatten[Table[Sum[Binomial[k, i]*BellB[n-k+i], {i, 0, k}], {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, May 24 2016, after Vladeta Jovovic *)
-
# requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
from itertools import accumulate
A011971 = blist = [1]
for _ in range(10**2):
b = blist[-1]
blist = list(accumulate([b]+blist))
A011971 += blist # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 19 2014
A052852
Expansion of e.g.f.: (x/(1-x))*exp(x/(1-x)).
Original entry on oeis.org
0, 1, 4, 21, 136, 1045, 9276, 93289, 1047376, 12975561, 175721140, 2581284541, 40864292184, 693347907421, 12548540320876, 241253367679185, 4909234733857696, 105394372192969489, 2380337795595885156, 56410454014314490981, 1399496554158060983080
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- David Angell, A family of continued fractions, Journal of Number Theory, Volume 130, Issue 4, April 2010, Pages 904-911, Section 2.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 820
- Florent Hivert, Jean-Christophe Novelli and Jean-Yves Thibon, Commutative combinatorial Hopf algebras, arXiv:math/0605262 [math.CO], 2006.
- John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.
- Luis Verde-Star, A Matrix Approach to Generalized Delannoy and Schröder Arrays, J. Int. Seq., Vol. 24 (2021), Article 21.4.1.
- Michael Wallner, A bijection of plane increasing trees with relaxed binary trees of right height at most one, arXiv:1706.07163 [math.CO], 2017, Table 2 on p. 13.
- Index entries for sequences related to Laguerre polynomials
Row sums of unsigned triangle
A062139 (generalized a=2 Laguerre).
-
[n eq 0 select 0 else Factorial(n)*Evaluate(LaguerrePolynomial(n-1, 0), -1): n in [0..30]]; // G. C. Greubel, Feb 23 2021
-
spec := [S,{B=Set(C),C=Sequence(Z,1 <= card),S=Prod(B,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
a := n -> ifelse(n = 0, 0, n!*hypergeom([-n+1], [1], -1)): seq(simplify(a(n)), n = 0..18); # Peter Luschny, Dec 30 2024
-
Table[n!*SeriesCoefficient[(x/(1-x))*E^(x/(1-x)),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 09 2012 *)
Table[If[n==0, 0, n!*LaguerreL[n-1, 0, -1]], {n, 0, 30}] (* G. C. Greubel, Feb 23 2021 *)
-
my(x='x+O('x^30)); concat([0], Vec(serlaplace((x/(1-x))*exp(x/(1-x))))) \\ G. C. Greubel, May 15 2018
-
[0 if n==0 else factorial(n)*gen_laguerre(n-1, 0, -1) for n in (0..30)] # G. C. Greubel, Feb 23 2021
A056857
Triangle read by rows: T(n,c) = number of successive equalities in set partitions of n.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 5, 6, 3, 1, 15, 20, 12, 4, 1, 52, 75, 50, 20, 5, 1, 203, 312, 225, 100, 30, 6, 1, 877, 1421, 1092, 525, 175, 42, 7, 1, 4140, 7016, 5684, 2912, 1050, 280, 56, 8, 1, 21147, 37260, 31572, 17052, 6552, 1890, 420, 72, 9, 1, 115975, 211470, 186300, 105240, 42630, 13104, 3150, 600, 90, 10, 1
Offset: 1
Winston C. Yang (winston(AT)cs.wisc.edu), Aug 31 2000
For example {1, 2, 1, 2, 2, 3} is a set partition of {1, 2, 3, 4, 5, 6} and has 1 successive equality, at i = 4.
Triangle begins:
1;
1, 1;
2, 2, 1;
5, 6, 3, 1;
15, 20, 12, 4, 1;
52, 75, 50, 20, 5, 1;
203, 312, 225, 100, 30, 6, 1;
...
From _Paul Barry_, Apr 23 2009: (Start)
Production matrix is
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 3, 3, 1, 1;
1, 4, 6, 4, 1, 1;
1, 5, 10, 10, 5, 1, 1;
1, 6, 15, 20, 15, 6, 1, 1;
1, 7, 21, 35, 35, 21, 7, 1, 1;
1, 8, 28, 56, 70, 56, 28, 8, 1, 1; ... (End)
- W. C. Yang, Conjectures on some sequences involving set partitions and Bell numbers, preprint, 2000. [Apparently unpublished]
- Alois P. Heinz, Rows n = 1..141, flattened
- H. W. Becker, Rooks and rhymes, Math. Mag., 22 (1948/49), 23-26. See Table III.
- H. W. Becker, Rooks and rhymes, Math. Mag., 22 (1948/49), 23-26. [Annotated scanned copy]
- Fufa Beyene, Jörgen Backelin, Roberto Mantaci, and Samuel A. Fufa, Set Partitions and Other Bell Number Enumerated Objects, J. Int. Seq., Vol. 26 (2023), Article 23.1.8.
- A. Hennessy and Paul Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Orthogonal Polynomials, J. Int. Seq. 14 (2011) # 11.8.2, Corollary 17.
- G. Hurst and A. Schultz, An elementary (number theory) proof of Touchard's congruence, arXiv:0906.0696v2 [math.CO], 2009.
- A. O. Munagi, Set partitions with successions and separations, Intl. J. Math. Math. Sci. 2005 (2005) 451-463.
- M. Spivey, A generalized recurrence for Bell numbers, J. Int. Seq., 11 (2008), no. 2, Article 08.2.5
- W. Yang, Bell numbers and k-trees, Disc. Math. 156 (1996) 247-252.
-
with(combinat): A056857:=(n,c)->binomial(n-1,c)*bell(n-1-c): for n from 1 to 11 do seq(A056857(n,c),c=0..n-1) od; # yields sequence in triangular form; Emeric Deutsch, Nov 10 2006
with(linalg): # Yields sequence in matrix form:
A056857_matrix := n -> subs(exp(1)=1, exponential(exponential(
matrix(n,n,[seq(seq(`if`(j=k+1,j,0),k=0..n-1),j=0..n-1)])))):
A056857_matrix(8); # Peter Luschny, Apr 18 2011
-
t[n_, k_] := BellB[n-1-k]*Binomial[n-1, k]; Flatten[ Table[t[n, k], {n, 1, 11}, {k, 0, n-1}]](* Jean-François Alcover, Apr 25 2012, after Emeric Deutsch *)
-
B(n) = sum(k=0, n, stirling(n, k, 2));
tabl(nn)={for(n=1, nn, for(k=0, n - 1, print1(B(n - 1 - k) * binomial(n - 1, k),", ");); print(););};
tabl(12); \\ Indranil Ghosh, Mar 19 2017
-
from sympy import bell, binomial
for n in range(1,12):
print([bell(n - 1 - k) * binomial(n - 1, k) for k in range(n)]) # Indranil Ghosh, Mar 19 2017
-
def a(n): return (-1)^n / factorial(n)
@cached_function
def p(n, m):
R = PolynomialRing(QQ, "x")
if n == 0: return R(a(m))
return R((m + x)*p(n - 1, m) - (m + 1)*p(n - 1, m + 1))
for n in range(11): print(p(n, 0).list()) # Peter Luschny, Jun 18 2023
A143494
Triangle read by rows: 2-Stirling numbers of the second kind.
Original entry on oeis.org
1, 2, 1, 4, 5, 1, 8, 19, 9, 1, 16, 65, 55, 14, 1, 32, 211, 285, 125, 20, 1, 64, 665, 1351, 910, 245, 27, 1, 128, 2059, 6069, 5901, 2380, 434, 35, 1, 256, 6305, 26335, 35574, 20181, 5418, 714, 44, 1, 512, 19171, 111645, 204205, 156660, 58107, 11130, 1110, 54, 1
Offset: 2
Triangle begins
n\k|...2....3....4....5....6....7
=================================
2..|...1
3..|...2....1
4..|...4....5....1
5..|...8...19....9....1
6..|..16...65...55...14....1
7..|..32..211..285..125...20....1
...
T(4,3) = 5. The set {1,2,3,4} can be partitioned into three subsets such that 1 and 2 belong to different subsets in 5 ways: {{1}{2}{3,4}}, {{1}{3}{2,4}}, {{1}{4}{2,3}}, {{2}{3}{1,4}} and {{2}{4}{1,3}}; the remaining possibility {{1,2}{3}{4}} is not allowed.
From _Peter Bala_, Feb 23 2025: (Start)
The array factorizes as
/ 1 \ /1 \ /1 \ /1 \
| 2 1 | | 2 1 ||0 1 ||0 1 |
| 4 5 1 | = | 4 3 1 ||0 2 1 ||0 0 1 | ...
| 8 19 9 1 | | 8 7 4 1 ||0 4 3 1 ||0 0 2 1 |
|16 65 55 14 1| |16 15 11 6 1||0 8 7 4 1 ||0 0 4 3 1 |
|... | |... ||... ||... |
where, in the infinite product on the right-hand side, the first array is the Riordan array (1/(1 - 2*x), x/(1 - x)). See A055248. (End)
- Peter Bala, Factorising (r,b)-Stirling arrays
- S. Alex Bradt, Jennifer Elder, Pamela E. Harris, Gordon Rojas Kirby, Eva Reutercrona, Yuxuan (Susan) Wang, and Juliet Whidden, Unit interval parking functions and the r-Fubini numbers, arXiv:2401.06937 [math.CO], 2024. See page 2.
- Andrei Z. Broder, The r-Stirling numbers, Report Number: CS-TR-82-949, 1982, Stanford University, Department of Computer Science.
- Andrei Z. Broder, The r-Stirling numbers, Discrete Math. 49, 241-259 (1984).
- C. B. Corcino, L. C. Hsu, and E. L. Tan, Asymptotic approximations of r-Stirling numbers, Approximation Theory Appl. 15, No. 3 13-25 (1999).
- A. Dzhumadildaev and D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764 [math.CO], 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - _N. J. A. Sloane_, Mar 28 2015]
- Askar Dzhumadil’daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
- Eldar Fischer, Johann A. Makowsky, and Vsevolod Rakita, MC-finiteness of restricted set partition functions, arXiv:2302.08265 [math.CO], 2023.
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
- L. Liu and Y. Wang, A unified approach to polynomial sequences with only real zeros, arXiv:math/0509207 [math.CO], 2005-2006.
- V. V. Mikhailov, Ordering of some boson operator functions, J. Phys A: Math. Gen. 16 (1983) 3817-3827.
- V. V. Mikhailov, Normal ordering and generalised Stirling numbers, J. Phys A: Math. Gen. 18 (1985) 231-235.
- Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Technical Report TR 99-05, July 1999, Universität Wien.
- Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Discrete Math. 239 No. 1-3, 33-51 (2001).
- M. d’Ocagne, Sur une classe de nombres remarquables, Amer. J. Math., Vol. 9 (1887), 353-380.
- Michael J. Schlosser and Meesue Yoo, Elliptic Rook and File Numbers, Electronic Journal of Combinatorics, 24(1) (2017), #P1.31.
- Mark Shattuck, Generalized r-Lah numbers, arXiv:1412.8721 [math.CO], 2014.
-
with combinat: T := (n, k) -> (1/(k-2)!)*add ((-1)^(k-i)*binomial(k-2,i)*(i+2)^(n-2),i = 0..k-2): for n from 2 to 11 do seq(T(n, k), k = 2..n) end do;
-
t[n_, k_] := StirlingS2[n, k] - StirlingS2[n-1, k]; Flatten[ Table[ t[n, k], {n, 2, 11}, {k, 2, n}]] (* Jean-François Alcover, Dec 02 2011 *)
-
@CachedFunction
def stirling2r(n, k, r) :
if n < r: return 0
if n == r: return 1 if k == r else 0
return stirling2r(n-1,k-1,r) + k*stirling2r(n-1,k,r)
A143494 = lambda n,k: stirling2r(n, k, 2)
for n in (2..6):
[A143494(n, k) for k in (2..n)] # Peter Luschny, Nov 19 2012
A055248
Triangle of partial row sums of triangle A007318(n,m) (Pascal's triangle). Triangle A008949 read backwards. Riordan (1/(1-2x), x/(1-x)).
Original entry on oeis.org
1, 2, 1, 4, 3, 1, 8, 7, 4, 1, 16, 15, 11, 5, 1, 32, 31, 26, 16, 6, 1, 64, 63, 57, 42, 22, 7, 1, 128, 127, 120, 99, 64, 29, 8, 1, 256, 255, 247, 219, 163, 93, 37, 9, 1, 512, 511, 502, 466, 382, 256, 130, 46, 10, 1, 1024, 1023, 1013, 968, 848, 638, 386, 176, 56, 11, 1
Offset: 0
The triangle a(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 2 1
2: 4 3 1
3: 8 7 4 1
4: 16 15 11 5 1
5: 32 31 26 16 6 1
6: 64 63 57 42 22 7 1
7: 128 127 120 99 64 29 8 1
8: 256 255 247 219 163 93 37 9 1
9: 512 511 502 466 382 256 130 46 10 1
10: 1024 1023 1013 968 848 638 386 176 56 11 1
... Reformatted. - _Wolfdieter Lang_, Jan 09 2015
Fourth row polynomial (n=3): p(3,x)= 8 + 7*x + 4*x^2 + x^3.
The matrix inverse starts
1;
-2, 1;
2, -3, 1;
-2, 5, -4, 1;
2, -7, 9, -5, 1;
-2, 9, -16, 14, -6, 1;
2, -11, 25,- 30, 20, -7, 1;
-2, 13, -36, 55, -50, 27, -8, 1;
2, -15, 49, -91, 105, -77, 35, -9, 1;
-2, 17, -64, 140, -196, 182, -112, 44, -10, 1;
2, -19, 81, -204, 336, -378, 294, -156, 54, -11, 1;
...
which may be related to A029653. - _R. J. Mathar_, Mar 29 2013
From _Peter Bala_, Dec 23 2014: (Start)
With the array M(k) as defined in the Formula section, the infinite product M(0)*M(1)*M(2)*... begins
/1 \ /1 \ /1 \ /1 \
|2 1 ||0 1 ||0 1 | |2 1 |
|4 3 1 ||0 2 1 ||0 0 1 |... = |4 5 1 |
|8 7 4 1 ||0 4 3 1 ||0 0 2 1 | |8 19 9 1 |
|... ||0 8 7 4 1 ||0 0 4 3 1| |... |
|... ||... ||... | | |
= A143494. (End)
Matrix factorization of square array as P*U*transpose(P):
/1 \ /1 \ /1 1 1 1 ...\ /1 1 1 1 ...\
|1 1 ||1 1 ||0 1 2 3 ... | |2 3 4 5 ... |
|1 2 1 ||1 1 1 ||0 0 1 3 ... | = |4 7 11 16 ... |
|1 3 3 1 ||1 1 1 1 ||0 0 0 1 ... | |8 15 26 42 ... |
|... ||... ||... | |... |
- _Peter Bala_, Jan 13 2016
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- Peter Bala, Notes on generalized Riordan arrays
- Peter Bala, A055248: Rapidly converging series for log(2) and Pi
- Jean-Luc Baril, Javier F. González, and José L. Ramírez, Last symbol distribution in pattern avoiding Catalan words, Univ. Bourgogne (France, 2022).
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Norman Lindquist and Gerard Sierksma, Extensions of set partitions, Journal of Combinatorial Theory, Series A 31.2 (1981): 190-198. See Table I.
- L. W. Shapiro, S. Getu, Wen-Jin Woan and L. C. Woodson, The Riordan Group, Discrete Appl. Maths. 34 (1991) 229-239.
Column sequences:
A000079 (powers of 2, m=0),
A000225 (m=1),
A000295 (m=2),
A002662 (m=3),
A002663 (m=4),
A002664 (m=5),
A035038 (m=6),
A035039 (m=7),
A035040 (m=8),
A035041 (m=9),
A035042 (m=10).
-
a055248 n k = a055248_tabl !! n !! k
a055248_row n = a055248_tabl !! n
a055248_tabl = map reverse a008949_tabl
-- Reinhard Zumkeller, Jun 20 2015
-
T := (n,k) -> 2^n - (1/2)*binomial(n, k-1)*hypergeom([1, n + 1], [n-k + 2], 1/2).
seq(seq(simplify(T(n,k)), k=0..n),n=0..10); # Peter Luschny, Oct 10 2019
-
a[n_, m_] := Sum[ Binomial[n, m + j], {j, 0, n}]; Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013, after Paul Barry *)
T[n_, k_] := Binomial[n, k] * Hypergeometric2F1[1, k - n, k + 1, -1];
Flatten[Table[T[n, k], {n, 0, 7}, {k, 0, n}]] (* Peter Luschny, Oct 06 2023 *)
Showing 1-10 of 86 results.
Next
Comments