cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A005493 2-Bell numbers: a(n) = number of partitions of [n+1] with a distinguished block.

Original entry on oeis.org

1, 3, 10, 37, 151, 674, 3263, 17007, 94828, 562595, 3535027, 23430840, 163254885, 1192059223, 9097183602, 72384727657, 599211936355, 5150665398898, 45891416030315, 423145657921379, 4031845922290572, 39645290116637023, 401806863439720943, 4192631462935194064
Offset: 0

Views

Author

Keywords

Comments

Number of Boolean sublattices of the Boolean lattice of subsets of {1..n}.
a(n) = p(n+1) where p(x) is the unique degree n polynomial such that p(k) = A000110(k+1) for k = 0, 1, ..., n. - Michael Somos, Oct 07 2003
With offset 1, number of permutations beginning with 12 and avoiding 21-3.
Rows sums of Bell's triangle (A011971). - Jorge Coveiro, Dec 26 2004
Number of blocks in all set partitions of an (n+1)-set. Example: a(2)=10 because the set partitions of {1,2,3} are 1|2|3, 1|23, 12|3, 13|2 and 123, with a total of 10 blocks. - Emeric Deutsch, Nov 13 2006
Number of partitions of n+3 with at least one singleton and with the smallest element in a singleton equal to 2. - Olivier Gérard, Oct 29 2007
See page 29, Theorem 5.6 of my paper on the arXiv: These numbers are the dimensions of the homogeneous components of the operad called ComTrip associated with commutative triplicial algebras. (Triplicial algebras are related to even trees and also to L-algebras, see A006013.) - Philippe Leroux, Nov 17 2007
Number of set partitions of (n+2) elements where two specific elements are clustered separately. Example: a(1)=3 because 1/2/3, 1/23, 13/2 are the 3 set partitions with 1, 2 clustered separately. - Andrey Goder (andy.goder(AT)gmail.com), Dec 17 2007
Equals A008277 * [1,2,3,...], i.e., the product of the Stirling number of the second kind triangle and the natural number vector. a(n+1) = row sums of triangle A137650. - Gary W. Adamson, Jan 31 2008
Prefaced with a "1" = row sums of triangle A152433. - Gary W. Adamson, Dec 04 2008
Equals row sums of triangle A159573. - Gary W. Adamson, Apr 16 2009
Number of embedded coalitions in an (n+1)-person game. - David Yeung (wkyeung(AT)hkbu.edu.hk), May 08 2008
If prefixed with 0, gives first differences of Bell numbers A000110 (cf. A106436). - N. J. A. Sloane, Aug 29 2013
Sum_{n>=0} a(n)/n! = e^(e+1) = 41.19355567... (see A235214). Contrast with e^(e-1) = Sum_{n>=0} A000110(n)/n!. - Richard R. Forberg, Jan 05 2014

Examples

			For example, a(1) counts (12), (1)-2, 1-(2) where dashes separate blocks and the distinguished block is parenthesized.
		

References

  • Olivier Gérard and Karol A. Penson, A budget of set partition statistics, in preparation. Unpublished as of 2017.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row or column of the array A108087.
Row sums of triangle A143494. - Wolfdieter Lang, Sep 29 2011. And also of triangle A362924. - N. J. A. Sloane, Aug 10 2023

Programs

  • Maple
    with(combinat): seq(bell(n+2)-bell(n+1),n=0..22); # Emeric Deutsch, Nov 13 2006
    seq(add(binomial(n, k)*(bell(n-k)), k=1..n), n=1..23); # Zerinvary Lajos, Dec 01 2006
    A005493  := proc(n) local a,b,i;
    a := [seq(3,i=1..n)]; b := [seq(2,i=1..n)];
    2^n*exp(-x)*hypergeom(a,b,x); round(evalf(subs(x=1,%),66)) end:
    seq(A005493(n),n=0..22); # Peter Luschny, Mar 30 2011
    BT := proc(n,k) option remember; if n = 0 and k = 0 then 1
    elif k = n then BT(n-1,0) else BT(n,k+1)+BT(n-1,k) fi end:
    A005493 := n -> add(BT(n,k),k=0..n):
    seq(A005493(i),i=0..22); # Peter Luschny, Aug 04 2011
    # For Maple code for r-Bell numbers, etc., see A232472. - N. J. A. Sloane, Nov 27 2013
  • Mathematica
    a=Exp[x]-1; Rest[CoefficientList[Series[a Exp[a],{x,0,20}],x] * Table[n!,{n,0,20}]]
    a[ n_] := If[ n<0, 0, With[ {m = n+1}, m! SeriesCoefficient[ # Exp@# &[ Exp@x - 1], {x, 0, m}]]]; (* Michael Somos, Nov 16 2011 *)
    Differences[BellB[Range[30]]] (* Harvey P. Dale, Oct 16 2014 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( exp( x + x * O(x^n)) + 2*x - 1), n))}; /* Michael Somos, Oct 09 2002 */
    
  • PARI
    {a(n) = if( n<0, 0, n+=2; subst( polinterpolate( Vec( serlaplace( exp( exp( x + O(x^n)) - 1) - 1))), x, n))}; /* Michael Somos, Oct 07 2003 */
    
  • Python
    # requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
    from itertools import accumulate
    A005493_list, blist, b = [], [1], 1
    for _ in range(1001):
        blist = list(accumulate([b]+blist))
        b = blist[-1]
        A005493_list.append(blist[-2])
    # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014

Formula

a(n-1) = Sum_{k=1..n} k*Stirling2(n, k) for n>=1.
E.g.f.: exp(exp(x) + 2*x - 1). First differences of Bell numbers (if offset 1). - Michael Somos, Oct 09 2002
G.f.: Sum_{k>=0} (x^k/Product_{l=1..k} (1-(l+1)x)). - Ralf Stephan, Apr 18 2004
a(n) = Sum_{i=0..n} 2^(n-i)*B(i)*binomial(n,i) where B(n) = Bell numbers A000110(n). - Fred Lunnon, Aug 04 2007 [Written umbrally, a(n) = (B+2)^n. - N. J. A. Sloane, Feb 07 2009]
Representation as an infinite series: a(n-1) = Sum_{k>=2} (k^n*(k-1)/k!)/exp(1), n=1, 2, ... This is a Dobinski-type summation formula. - Karol A. Penson, Mar 14 2002
Row sums of A011971 (Aitken's array, also called Bell triangle). - Philippe Deléham, Nov 15 2003
a(n) = exp(-1)*Sum_{k>=0} ((k+2)^n)/k!. - Gerald McGarvey, Jun 03 2004
Recurrence: a(n+1) = 1 + Sum_{j=1..n} (1+binomial(n, j))*a(j). - Jon Perry, Apr 25 2005
a(n) = A000296(n+3) - A000296(n+1). - Philippe Deléham, Jul 31 2005
a(n) = B(n+2) - B(n+1), where B(n) are Bell numbers (A000110). - Franklin T. Adams-Watters, Jul 13 2006
a(n) = A123158(n,2). - Philippe Deléham, Oct 06 2006
Binomial transform of Bell numbers 1, 2, 5, 15, 52, 203, 877, 4140, ... (see A000110).
Define f_1(x), f_2(x), ... such that f_1(x)=x*e^x, f_{n+1}(x) = (d/dx)(x*f_n(x)), for n=2,3,.... Then a(n-1) = e^(-1)*f_n(1). - Milan Janjic, May 30 2008
Representation of numbers a(n), n=0,1..., as special values of hypergeometric function of type (n)F(n), in Maple notation: a(n)=exp(-1)*2^n*hypergeom([3,3...3],[2.2...2],1), n=0,1..., i.e., having n parameters all equal to 3 in the numerator, having n parameters all equal to 2 in the denominator and the value of the argument equal to 1. Examples: a(0)= 2^0*evalf(hypergeom([],[],1)/exp(1))=1 a(1)= 2^1*evalf(hypergeom([3],[2],1)/exp(1))=3 a(2)= 2^2*evalf(hypergeom([3,3],[2,2],1)/exp(1))=10 a(3)= 2^3*evalf(hypergeom([3,3,3],[2,2,2],1)/exp(1))=37 a(4)= 2^4*evalf(hypergeom([3,3,3,3],[2,2,2,2],1)/exp(1))=151 a(5)= 2^5*evalf(hypergeom([3,3,3,3,3],[2,2,2,2,2],1)/exp(1)) = 674. - Karol A. Penson, Sep 28 2007
Let A be the upper Hessenberg matrix of order n defined by: A[i,i-1]=-1, A[i,j]=binomial(j-1,i-1), (i <= j), and A[i,j]=0 otherwise. Then, for n >= 1, a(n) = (-1)^(n)charpoly(A,-2). - Milan Janjic, Jul 08 2010
a(n) = D^(n+1)(x*exp(x)) evaluated at x = 0, where D is the operator (1+x)*d/dx. Cf. A003128, A052852 and A009737. - Peter Bala, Nov 25 2011
From Sergei N. Gladkovskii, Oct 11 2012 to Jan 26 2014: (Start)
Continued fractions:
G.f.: 1/U(0) where U(k) = 1 - x*(k+3) - x^2*(k+1)/U(k+1).
G.f.: 1/(U(0)-x) where U(k) = 1 - x - x*(k+1)/(1 - x/U(k+1)).
G.f.: G(0)/(1-x) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k+2*x-1) - x*(2*k+1)*(2*k+3)*(2*x*k+2*x-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k+3*x-1)/G(k+1) )).
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-2*x-k*x)/(1-x/(x-1/G(k+1) )).
G.f.: -G(0)/x where G(k) = 1 - 1/(1-k*x-x)/(1-x/(x-1/G(k+1) )).
G.f.: 1 - 2/x + (1/x-1)*S where S = sum(k>=0, ( 1 + (1-x)/(1-x-x*k) )*(x/(1-x))^k / prod(i=0..k-1, (1-x-x*i)/(1-x) ) ).
G.f.: (1-x)/x/(G(0)-x) - 1/x where G(k) = 1 - x*(k+1)/(1 - x/G(k+1) ).
G.f.: (1/G(0) - 1)/x^3 where G(k) = 1 - x/(x - 1/(1 + 1/(x*k-1)/G(k+1) )).
G.f.: 1/Q(0), where Q(k)= 1 - 2*x - x/(1 - x*(k+1)/Q(k+1)).
G.f.: G(0)/(1-3*x), where G(k) = 1 - x^2*(k+1)/( x^2*(k+1) - (1 - x*(k+3))*(1 - x*(k+4))/G(k+1) ). (End)
a(n) ~ exp(n/LambertW(n) + 3*LambertW(n)/2 - n - 1) * n^(n + 1/2) / LambertW(n)^(n+1). - Vaclav Kotesovec, Jun 09 2020
a(0) = 1; a(n) = 2 * a(n-1) + Sum_{k=0..n-1} binomial(n-1,k) * a(k). - Ilya Gutkovskiy, Jul 02 2020
a(n) ~ n^2 * Bell(n) / LambertW(n)^2 * (1 - LambertW(n)/n). - Vaclav Kotesovec, Jul 28 2021
a(n) = Sum_{k=0..n} 3^k*A124323(n, k). - Mélika Tebni, Jun 02 2022

Extensions

Definition revised by David Callan, Oct 11 2005

A055248 Triangle of partial row sums of triangle A007318(n,m) (Pascal's triangle). Triangle A008949 read backwards. Riordan (1/(1-2x), x/(1-x)).

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 8, 7, 4, 1, 16, 15, 11, 5, 1, 32, 31, 26, 16, 6, 1, 64, 63, 57, 42, 22, 7, 1, 128, 127, 120, 99, 64, 29, 8, 1, 256, 255, 247, 219, 163, 93, 37, 9, 1, 512, 511, 502, 466, 382, 256, 130, 46, 10, 1, 1024, 1023, 1013, 968, 848, 638, 386, 176, 56, 11, 1
Offset: 0

Views

Author

Wolfdieter Lang, May 26 2000

Keywords

Comments

In the language of the Shapiro et al. reference (also given in A053121) such a lower triangular (ordinary) convolution array, considered as matrix, belongs to the Riordan-group. The g.f. for the row polynomials p(n,x) (increasing powers of x) is 1/((1-2*z)*(1-x*z/(1-z))).
Binomial transform of the all 1's triangle: as a Riordan array, it factors to give (1/(1-x),x/(1-x))(1/(1-x),x). Viewed as a number square read by antidiagonals, it has T(n,k) = Sum_{j=0..n} binomial(n+k,n-j) and is then the binomial transform of the Whitney square A004070. - Paul Barry, Feb 03 2005
Riordan array (1/(1-2x), x/(1-x)). Antidiagonal sums are A027934(n+1), n >= 0. - Paul Barry, Jan 30 2005; edited by Wolfdieter Lang, Jan 09 2015
Eigensequence of the triangle = A005493: (1, 3, 10, 37, 151, 674, ...); row sums of triangles A011971 and A159573. - Gary W. Adamson, Apr 16 2009
Read as a square array, this is the generalized Riordan array ( 1/(1 - 2*x), 1/(1 - x) ) as defined in the Bala link (p. 5), which factorizes as ( 1/(1 - x), x/(1 - x) )*( 1/(1 - x), x )*( 1, 1 + x ) = P*U*transpose(P), where P denotes Pascal's triangle, A007318, and U is the lower unit triangular array with 1's on or below the main diagonal. - Peter Bala, Jan 13 2016

Examples

			The triangle a(n,m) begins:
n\m    0    1    2   3   4   5   6   7  8  9 10 ...
0:     1
1:     2    1
2:     4    3    1
3:     8    7    4   1
4:    16   15   11   5   1
5:    32   31   26  16   6   1
6:    64   63   57  42  22   7   1
7:   128  127  120  99  64  29   8   1
8:   256  255  247 219 163  93  37   9  1
9:   512  511  502 466 382 256 130  46 10  1
10: 1024 1023 1013 968 848 638 386 176 56 11  1
... Reformatted. - _Wolfdieter Lang_, Jan 09 2015
Fourth row polynomial (n=3): p(3,x)= 8 + 7*x + 4*x^2 + x^3.
The matrix inverse starts
   1;
  -2,   1;
   2,  -3,   1;
  -2,   5,  -4,    1;
   2,  -7,   9,   -5,    1;
  -2,   9, -16,   14,   -6,    1;
   2, -11,  25,-  30,   20,   -7,    1;
  -2,  13, -36,   55,  -50,   27,   -8,    1;
   2, -15,  49,  -91,  105,  -77,   35,   -9,  1;
  -2,  17, -64,  140, -196,  182, -112,   44, -10,   1;
   2, -19,  81, -204,  336, -378,  294, -156,  54, -11, 1;
   ...
which may be related to A029653. - _R. J. Mathar_, Mar 29 2013
From _Peter Bala_, Dec 23 2014: (Start)
With the array M(k) as defined in the Formula section, the infinite product M(0)*M(1)*M(2)*... begins
/1      \ /1        \ /1       \       /1       \
|2 1     ||0 1       ||0 1      |      |2  1     |
|4 3 1   ||0 2 1     ||0 0 1    |... = |4  5 1   |
|8 7 4 1 ||0 4 3 1   ||0 0 2 1  |      |8 19 9 1 |
|...     ||0 8 7 4 1 ||0 0 4 3 1|      |...      |
|...     ||...       ||...      |      |         |
= A143494. (End)
Matrix factorization of square array as P*U*transpose(P):
/1      \ /1        \ /1 1 1 1 ...\    /1  1  1  1 ...\
|1 1     ||1 1       ||0 1 2 3 ... |   |2  3  4  5 ... |
|1 2 1   ||1 1 1     ||0 0 1 3 ... | = |4  7 11 16 ... |
|1 3 3 1 ||1 1 1 1   ||0 0 0 1 ... |   |8 15 26 42 ... |
|...     ||...       ||...         |   |...            |
- _Peter Bala_, Jan 13 2016
		

Crossrefs

Column sequences: A000079 (powers of 2, m=0), A000225 (m=1), A000295 (m=2), A002662 (m=3), A002663 (m=4), A002664 (m=5), A035038 (m=6), A035039 (m=7), A035040 (m=8), A035041 (m=9), A035042 (m=10).
Row sums: A001792(n) = A055249(n, 0).
Alternating row sums: A011782.
Cf. A011971, A159573. - Gary W. Adamson, Apr 16 2009

Programs

  • Haskell
    a055248 n k = a055248_tabl !! n !! k
    a055248_row n = a055248_tabl !! n
    a055248_tabl = map reverse a008949_tabl
    -- Reinhard Zumkeller, Jun 20 2015
  • Maple
    T := (n,k) -> 2^n - (1/2)*binomial(n, k-1)*hypergeom([1, n + 1], [n-k + 2], 1/2).
    seq(seq(simplify(T(n,k)), k=0..n),n=0..10); # Peter Luschny, Oct 10 2019
  • Mathematica
    a[n_, m_] := Sum[ Binomial[n, m + j], {j, 0, n}]; Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013, after Paul Barry *)
    T[n_, k_] := Binomial[n, k] * Hypergeometric2F1[1, k - n, k + 1, -1];
    Flatten[Table[T[n, k], {n, 0, 7}, {k, 0, n}]]  (* Peter Luschny, Oct 06 2023 *)

Formula

a(n, m) = A008949(n, n-m), if n > m >= 0.
a(n, m) = Sum_{k=m..n} A007318(n, k) (partial row sums in columns m).
Column m recursion: a(n, m) = Sum_{j=m..n-1} a(j, m) + A007318(n, m) if n >= m >= 0, a(n, m) := 0 if n
G.f. for column m: (1/(1-2*x))*(x/(1-x))^m, m >= 0.
a(n, m) = Sum_{j=0..n} binomial(n, m+j). - Paul Barry, Feb 03 2005
Inverse binomial transform (by columns) of A112626. - Ross La Haye, Dec 31 2006
T(2n,n) = A032443(n). - Philippe Deléham, Sep 16 2009
From Peter Bala, Dec 23 2014: (Start)
Exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(8 + 7*x + 4*x^2/2! + x^3/3!) = 8 + 15*x + 26*x^2/2! + 42*x^3/3! + 64*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ).
Let M denote the present triangle. For k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/ having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to A143494 (but with a different offset). See the Example section. Cf. A106516. (End)
a(n,m) = Sum_{p=m..n} 2^(n-p)*binomial(p-1,m-1), n >= m >= 0, else 0. - Wolfdieter Lang, Jan 09 2015
T(n, k) = 2^n - (1/2)*binomial(n, k-1)*hypergeom([1, n+1], [n-k+2], 1/2). - Peter Luschny, Oct 10 2019
T(n, k) = binomial(n, k)*hypergeom([1, k - n], [k + 1], -1). - Peter Luschny, Oct 06 2023
n-th row polynomial R(n, x) = (2^n - x*(1 + x)^n)/(1 - x). These polynomials can be used to find series acceleration formulas for the constants log(2) and Pi. - Peter Bala, Mar 03 2025
Showing 1-2 of 2 results.