cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A193231 Blue code for n: in binary coding of a polynomial over GF(2), substitute x+1 for x (see Comments for precise definition).

Original entry on oeis.org

0, 1, 3, 2, 5, 4, 6, 7, 15, 14, 12, 13, 10, 11, 9, 8, 17, 16, 18, 19, 20, 21, 23, 22, 30, 31, 29, 28, 27, 26, 24, 25, 51, 50, 48, 49, 54, 55, 53, 52, 60, 61, 63, 62, 57, 56, 58, 59, 34, 35, 33, 32, 39, 38, 36, 37, 45, 44, 46, 47, 40, 41, 43, 42, 85, 84, 86
Offset: 0

Views

Author

Keywords

Comments

This is a self-inverse permutation of the nonnegative integers.
The function "substitute x+1 for x" on polynomials over GF(2) is completely multiplicative.
What is the density of fixed points in this sequence? Do we get a different answer if we look only at irreducible polynomials?
From Antti Karttunen, Dec 27 2013: (Start)
As what comes to the above question, the number of fixed points in range [2^(n-1),(2^n)-1] of the sequence is given by A131575(n). In range [0,0] there is one fixed point: 0, in range [1,1] there is also one: 1, in range [2,3] there are no fixed points, in range [4,7] there are two fixed points: 6 and 7, and so on. (Cf. also the C-code given in A118666.)
Similarly, the number of cycles in such ranges begins as 1, 1, 1, 3, 4, 10, 16, 36, 64, 136, ... which is A051437 shifted two steps right (prepended with 1's): Because the sequence is a self-inverse permutation, the number of its cycles in range [2^(n-1),(2^n)-1] is computed as: cycles(n) = (A011782(n)-number_of_fixedpoints(n))/2 + number_of_fixedpoints(n), which matches with the identity: A051437(n-2) = (A011782(n)-A131575(n))/2 + A131575(n), for n>=2.
In OEIS terms, the above comment about multiplicativeness can be rephrased as: a(A048720(x,y)) = A048720(a(x),a(y)) for all integers x, y >= 0. Here A048720(x,y) gives the product of carryless binary multiplication of x and y.
The permutation conjugates between Gray code and its inverse: A003188(n) = a(A006068(a(n))) and A006068(n) = a(A003188(a(n))) [cf. the identity 1.19-9d: gB = Bg^{-1} given on page 53 of fxtbook].
Because of the multiplicativity, the subset of irreducible (and respectively: composite) polynomials over GF(2) is closed under this permutation. Cf. the following mappings: a(A014580(n)) = A234750(n) and a(A091242(n)) = A234745(n).
(End)

Examples

			11, binary 1011, corresponds to polynomial x^3+x+1, substituting: (x+1)^3+(x+1)+1 = x^3+x^2+x+1 + x+1 + 1 = x^3+x^2+1, binary 1101 = decimal 13, so a(11) = 13.
From _Tilman Piesk_, Jun 26 2025: (Start)
The binary exponents of 11 are {0, 1, 3}, because 11 = 2^0 + 2^1 + 2^3.
a(11) = A001317(0) XOR A001317(1) XOR A001317(3) = 1 XOR 3 XOR 15 = 13. (End)
		

Crossrefs

Cf. A000069, A001969, A001317, A003987, A048720, A048724, A065621, A051437, A118666 (fixed points), A131575, A234022 (the number of 1-bits), A234023, A010060, A234745, A234750.
Similarly constructed permutation pairs: A003188/A006068, A135141/A227413, A232751/A232752, A233275/A233276, A233277/A233278, A233279/A233280.
Other permutations based on this (by conjugating, composing, etc): A234024, A234025/A234026, A234027, A234612, A234613, A234747, A234748, A244987, A245812, A245454.

Programs

  • Mathematica
    f[n_] := Which[0 <= # <= 1, #, EvenQ@ #, BitXor[2 #, #] &[f[#/2]], True, BitXor[#, 2 # + 1] &[f[(# - 1)/2]]] &@ Abs@ n; Table[f@ n, {n, 0, 66}] (* Michael De Vlieger, Feb 12 2016, after Robert G. Wilson v at A048724 and A065621 *)
  • PARI
    tox(n) = local(x=Mod(1,2)*X, xp=1, r); while(n>0,if(n%2,r+=xp);xp*=x;n\=2);r
    a(n)=subst(lift(subst(tox(n),X,X+1)),X,2)
    
  • PARI
    a(n)={local(x='x);subst(lift(Mod(1,2)*subst(Pol(binary(n),x),x,1+x)),x,2)};
    
  • Python
    def a065621(n): return n^(2*(n - (n&-n)))
    def a048724(n): return n^(2*n)
    l=[0, 1]
    for n in range(2, 101):
        if n%2==0: l.append(a048724(l[n//2]))
        else: l.append(a065621(1 + l[(n - 1)//2]))
    print(l) # Indranil Ghosh, Jun 04 2017
  • Scheme
    ;; with memoizing macro definec available in Antti Karttunen's IntSeq-library:
    (define (A193231 n) (let loop ((n n) (i 0) (s 0)) (cond ((zero? n) s) ((even? n) (loop (/ n 2) (+ 1 i) s)) (else (loop (/ (- n 1) 2) (+ 1 i) (A003987bi s (A001317 i))))))) ;; A003987bi implements binary XOR, A003987.
    ;; Antti Karttunen, Dec 27 2013
    
  • Scheme
    ;; With memoizing macro definec available in Antti Karttunen's IntSeq-library.
    ;; Alternative implementation, a recurrence based on entangling even & odd numbers with complementary pair A048724 and A065621:
    (definec (A193231 n) (cond ((< n 2) n) ((even? n) (A048724 (A193231 (/ n 2)))) (else (A065621 (+ (A193231 (/ (- n 1) 2)) 1)))))
    ;; Antti Karttunen, Dec 27 2013
    

Formula

From Antti Karttunen, Dec 27 2013: (Start)
a(0) = 0, and for any n = 2^a + 2^b + ... + 2^c, a(n) = A001317(a) XOR A001317(b) XOR ... XOR A001317(c), where XOR is bitwise XOR (A003987) and all the exponents a, b, ..., c are distinct, that is, they are the indices of 1-bits in the binary representation of n.
From above it follows, because all terms of A001317 are odd, that A000035(a(n)) = A010060(n) = A000035(a(2n)). Conversely, we also have A010060(a(n)) = A000035(n). Thus the permutation maps any even number to some evil number, A001969 (and vice versa), like it maps any odd number to some odious number, A000069 (and vice versa).
a(0)=0, a(1)=1, and for n>1, a(2n) = A048724(a(n)), a(2n+1) = A065621(1+a(n)). [A recurrence based on entangling even & odd numbers with the complementary pair A048724/A065621]
For all n, abs(a(2n)-a(2n+1)) = 1.
a(A000079(n)) = A001317(n).
(End)
It follows from the first paragraph above that a(A003987(n,k)) = A003987(a(n), a(k)), that is a(n XOR k) = a(n) XOR a(k). - Peter Munn, Nov 27 2019

A233275 Permutation of nonnegative integers obtained by entangling complementary pair A005187 & A055938 with even and odd numbers.

Original entry on oeis.org

0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 14, 10, 15, 11, 9, 8, 24, 25, 26, 28, 27, 29, 20, 30, 21, 22, 18, 31, 23, 19, 17, 16, 48, 49, 50, 52, 51, 53, 56, 54, 57, 58, 40, 55, 59, 41, 60, 42, 61, 44, 36, 43, 45, 62, 46, 37, 38, 34, 63, 47, 39, 35, 33, 32, 96, 97, 98, 100
Offset: 0

Views

Author

Antti Karttunen, Dec 18 2013

Keywords

Comments

It seems that for all n, a(A000079(n)) = A003945(n).

Crossrefs

Inverse permutation: A233276.
Similarly constructed permutation pairs: A135141/A227413, A232751/A232752, A233277/A233278, A233279/A233280, A003188/A006068.

Formula

a(0)=0, a(1)=1, and thereafter, if A079559(n)=1, a(n) = 2*a(A213714(n)-1), else a(n) = 1+(2*a(A234017(n))).
a(n) = A054429(A233277(n)). [Follows from the definitions of these sequences]

A071766 Denominator of the continued fraction expansion whose terms are the first-order differences of exponents in the binary representation of 4n, with the exponents of 2 being listed in descending order.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 3, 1, 2, 3, 3, 4, 5, 4, 5, 1, 2, 3, 3, 4, 5, 4, 5, 5, 7, 7, 8, 5, 7, 7, 8, 1, 2, 3, 3, 4, 5, 4, 5, 5, 7, 7, 8, 5, 7, 7, 8, 6, 9, 10, 11, 9, 12, 11, 13, 6, 9, 10, 11, 9, 12, 11, 13, 1, 2, 3, 3, 4, 5, 4, 5, 5, 7, 7, 8, 5, 7, 7, 8, 6, 9, 10, 11, 9, 12, 11, 13
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2002

Keywords

Comments

If the terms (n>0) are written as an array:
1,
1, 2,
1, 2, 3, 3,
1, 2, 3, 3, 4, 5, 4, 5,
1, 2, 3, 3, 4, 5, 4, 5, 5, 7, 7, 8, 5, 7, 7, 8,
1, 2, 3, 3, 4, 5, 4, 5, 5, 7, 7, 8, 5, 7, 7, 8, 6, 9, 10, 11, 9, 12, 11, 13, 6, 9,
then the sum of the m-th row is 3^m (m = 0,1,2,3,...), each column is constant and the terms are from A071585 (a(2^m+k) = A071585(k), k = 0,1,2,...).
If the rows are written in a right-aligned fashion:
1,
1, 2,
1, 2, 3, 3,
1, 2, 3, 3, 4, 5, 4, 5,
1, 2, 3, 3, 4, 5, 4, 5, 5, 7, 7, 8, 5, 7, 7, 8,
..., 7, 7, 8, 5, 7, 7, 8, 6, 9, 10, 11, 9, 12, 11, 13, 6, 9, 10, 11, 9, 12, 11, 13,
then each column is a Fibonacci sequence (a(2^(m+2)+k) = a(2^(m+1)+k) + a(2^m+k), m = 0,1,2,..., k = 0,1,2,...,2^m-1 with a_k(1) = A071766(k) and a_k(2) = A086593(k) being the first two terms of each column sequence). - Yosu Yurramendi, Jun 23 2014

Examples

			a(37) = 5 as it is the denominator of 17/5 = 3 + 1/(2 + 1/2), which is a continued fraction that can be derived from the binary expansion of 4*37 = 2^7 + 2^4 + 2^2; the binary exponents are {7, 4, 2}, thus the differences of these exponents are {3, 2, 2}; giving the continued fraction expansion of 17/5 = [3,2,2].
1, 2, 3, 3/2, 4, 5/2, 4/3, 5/3, 5, 7/2, 7/3, 8/3, 5/4, 7/5, 7/4, 8/5, 6, ...
		

Crossrefs

Programs

  • Mathematica
    {1}~Join~Table[Denominator@ FromContinuedFraction@ Append[Abs@ Differences@ #, Last@ #] &@ Log2[NumberExpand[4 n, 2] /. 0 -> Nothing], {n, 120}] (* Version 11, or *)
    {1}~Join~Table[Denominator@ FromContinuedFraction@ Append[Abs@ Differences@ #, Last@ #] &@ Log2@ DeleteCases[# Reverse[2^Range[0, Length@ # - 1]] &@ IntegerDigits[4 n, 2], k_ /; k == 0], {n, 120}] (* Michael De Vlieger, Aug 15 2016 *)
  • R
    blocklevel <- 6 # arbitrary
    a <- 1
    for(m in 0:blocklevel) for(k in 0:(2^(m-1)-1)){
      a[2^(m+1)+k]             <- a[2^m+k]
      a[2^(m+1)+2^(m-1)+k]     <- a[2^m+2^(m-1)+k]
      a[2^(m+1)+2^m+k]         <- a[2^(m+1)+k]     +  a[2^(m+1)+2^(m-1)+k]
      a[2^(m+1)+2^m+2^(m-1)+k] <- a[2^(m+1)+2^m+k]
    }
    a
    # Yosu Yurramendi, Jul 11 2014

Formula

a(n) = A071585(m), where m = n - floor(log_2(n));
a(0) = 1, a(2^k) = 1, a(2^k + 1) = 2.
a(2^k - 1) = Fibonacci(k+1) = A000045(k+1).
a(2^m+k) = A071585(k), m=0,1,2,..., k=0,1,2,...,2^m-1. - Yosu Yurramendi, Jun 23 2014
a(2^m-k) = F_k(m), k=0,1,2,..., m > log_2(k). F_k(m) is a Fibonacci sequence, where F_k(1) = a(2^(m_0(k))-1-k), F_k(2) = a(2^(m_0(k)+1)-1-k), m_0(k) = ceiling(log_2(k+1))+1 = A070941(k). - Yosu Yurramendi, Jun 23 2014
a(n) = A002487(A059893(A233279(n))) = A002487(1+A059893(A006068(n))), n > 0. - Yosu Yurramendi, Sep 29 2021

A071585 Numerator of the continued fraction expansion whose terms are the first-order differences of exponents in the binary representation of 4*n, with the exponents of 2 being listed in descending order.

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 4, 5, 5, 7, 7, 8, 5, 7, 7, 8, 6, 9, 10, 11, 9, 12, 11, 13, 6, 9, 10, 11, 9, 12, 11, 13, 7, 11, 13, 14, 13, 17, 15, 18, 11, 16, 17, 19, 14, 19, 18, 21, 7, 11, 13, 14, 13, 17, 15, 18, 11, 16, 17, 19, 14, 19, 18, 21, 8, 13, 16, 17, 17, 22, 19, 23, 16, 23, 24, 27, 19
Offset: 0

Views

Author

Paul D. Hanna, Jun 01 2002

Keywords

Comments

Thus a(n)/a(m) = d_1 + 1/(d_2 + 1/(d_3 + ... + 1/d_k)) where m = n - 2^floor(log_2(n)) + 1 and where d_j = b_j - b_(j+1) are the differences of the binary exponents b_j > b_(j+1) defined by: 4*n = 2^b_1 + 2^b_2 + 2^b_3 + ... 2^b_k.
All the rationals are uniquely represented by this sequence - compare Stern's diatomic sequence A002487.
This sequence lists the rationals >= 1 in order by the sum of the terms of their continued fraction expansions. For example, the numerators generated from partitions of 5 that do not end with 1 are listed together as 5, 7, 7, 8, 5, 7, 7, 8, since: 5/1 = [5]; 7/2 = [3;2]; 7/3 = [2;3]; 8/3 = [2;1,2]; 5/4 = [1;4]; 7/5 = [1;2,2]; 7/4 = [1;1,3]; 8/5 = [1;1,1,2].
From Yosu Yurramendi, Jun 23 2014: (Start)
If the terms (n>0) are written as an array:
1,
2,
3, 3,
4, 5, 4, 5,
5, 7, 7, 8, 5, 7, 7, 8,
6, 9,10,11, 9,12,11,13, 6, 9,10,11, 9,12,11,13,
7,11,13,14,13,17,15,18,11,16,17,19,14,19,18,21,7,11,13,14,13,17,15,18,11, ...
then the sum of the k-th row is 2*3^(k-2) for k>1, each column is an arithmetic progression. The differences of the arithmetic sequences give the sequence A071585 itself: a(2^(p+1)+k) - a(2^p+k) = a(k). A002487 and A007306 also have these properties. The first terms of columns, excluding a(0), give A086593.
If the rows (n>0) are written on right:
1;
2;
3, 3;
4, 5, 4, 5;
5, 7, 7, 8, 5, 7, 7, 8;
6, 9, 10, 11, 9, 12, 11, 13, 6, 9, 10, 11, 9, 12, 11, 13;
then each column is a Fibonacci sequence: a(2^(p+2)+k) = a(2^(p+1)+k) + a(2^p+k). The first terms of columns, excluding a(0), give A086593. (End)
n>1 occurs in this sequence phi(n) = A000010(n) times, as it occurs in A007306 (Franklin T. Adams-Watters's comment), that is the sequence obtained by adding numerator and denominator in the Calkin-Wilf enumeration system of positive rationals. A229742(n)/A071766(n) is also an enumeration system of all positive rationals (HCS system), and in each level m >= 0 (ranks between 2^m and 2^(m+1)-1) rationals are the same in both systems. Thus a(n) (A229742(n)+A071766(n)) has the same terms in each level as A007306. The same property occurs in all numerator+denominator sequences of enumeration systems of positive rationals, as, for example, A007306 (A007305+A047679), A086592 (A020650+A020651), and A268087 (A162909+A162910). - Yosu Yurramendi, Apr 06 2016
a(n) = A086592(A059893(n)), a(A059893(n)) = A086592(n), n > 0. - Yosu Yurramendi, May 30 2017

Examples

			a(37)=17 as it is the numerator of 17/5 = 3 + 1/(2 + 1/2), which is a continued fraction that can be derived from the binary expansion of 4*37 = 2^7 + 2^4 + 2^2; the binary exponents are {7, 4, 2}, thus the differences of these exponents are {3, 2, 2}; giving the continued fraction expansion of 17/5=[3,2,2].
Illustration of Sum_{m=0..2^(k-1)-1} a(2^k + m) = 3^k:
k=2: 3^2 = a(2^2) + a(2^2 + 1) = 4 + 5;
k=3: 3^3 = a(2^3) + a(2^3 + 1) + a(2^3 + 2) + a(2^3 + 3) = 5 + 7 + 7 + 8;
k=4: 3^4 = a(2^4) + a(2^4+1) + a(2^4+2) + a(2^4+3) + a(2^4+4) + a(2^4+5) + a(2^4+6) + a(2^4+7) = 6 + 9 + 10 + 11 + 9 + 12 + 11 + 13.
1, 2, 3, 3/2, 4, 5/2, 4/3, 5/3, 5, 7/2, 7/3, 8/3, 5/4, 7/5, 7/4, 8/5, 6, ...
From _Yosu Yurramendi_, Jun 27 2014: (Start)
a(0) =             = 1;
a(1) = a(0) + a(0) = 2;
a(2) = a(0) + a(1) = 3;
a(3) = a(1) + a(0) = 3;
a(4) = a(0) + a(2) = 4;
a(5) = a(1) + a(3) = 5;
a(6) = a(2) + a(0) = 4;
a(7) = a(3) + a(1) = 5;
a(8) = a(0) + a(4) = 5;
a(9) = a(1) + a(5) = 7;
a(10) = a(2) + a(6) = 7;
a(11) = a(3) + a(7) = 8;
a(12) = a(4) + a(0) = 5;
a(13) = a(5) + a(1) = 7;
a(14) = a(6) + a(2) = 7;
a(15) = a(7) + a(3) = 8. (End)
		

Crossrefs

Cf. A071766.

Programs

  • Mathematica
    ncf[n_]:=Module[{br=Reverse[Flatten[Position[Reverse[IntegerDigits[4 n,2]],1]-1]]}, Numerator[FromContinuedFraction[Flatten[Join[{Abs[ Differences[ br]],Last[br]}]]]]]; Join[{1},Array[ncf,80]] (* Harvey P. Dale, Jul 01 2012 *)
    {1}~Join~Table[Numerator@ FromContinuedFraction@ Append[Abs@ Differences@ #, Last@ #] &@ Log2[NumberExpand[4 n, 2] /. 0 -> Nothing], {n, 120}] (* Version 11, or *)
    {1}~Join~Table[Numerator@ FromContinuedFraction@ Append[Abs@ Differences@ #, Last@ #] &@ Log2@ DeleteCases[# Reverse[2^Range[0, Length@ # - 1]] &@ IntegerDigits[4 n, 2], k_ /; k == 0], {n, 120}] (* Michael De Vlieger, Aug 15 2016 *)
  • R
    blocklevel <- 7  # arbitrary
    a <- c(1,2)
    for(k in 1:blocklevel)
    a <- c(a, a + c(a[((length(a)/2)+1):length(a)],a[1:(length(a)/2)]))
    a
    # Yosu Yurramendi, Jun 26 2014
    
  • R
    blocklevel <- 7  # arbitrary
    a <- c(1,2)
    for(p in 0:blocklevel)
      for(k in 1:2^(p+1)){
        if (k <=  2^p) a[k + 2^(p+1)] = a[k] + a[k + 2^p]
        else           a[k + 2^(p+1)] = a[k] + a[k - 2^p]
    }
    a
    # Yosu Yurramendi, Jun 27 2014

Formula

a(2^k + 2^j + m) = (k-j)*a(2^j + m) + a(m) when 2^k > 2^j > m >= 0.
a(0) = 1, a(2^k) = k + 2,
a(2^k + 1) = 2*k + 1 (k>0),
a(2^k + 2) = 3*k - 2 (k>1),
a(2^k + 3) = 3*k - 1 (k>1),
a(2^k + 4) = 4*k - 7 (k>2).
a(2^k - 1) = Fibonacci(k+2) = A000045(k+2).
Sum_{m=0..2^(k-1)-1} a(2^k + m) = 3^k (k>0).
From Yosu Yurramendi, Jun 27 2014: (Start)
Write n = k + 2^(m+1), k = 0,1,2,...,2^(m+1)-1, m = 0,1,2,...
if 0 <= k < 2^m, a(k + 2^(m+1)) = a(k) + a(k + 2^m).
if 2^m <= k < 2^(m+1), a(k + 2^(m+1)) = a(k) + a(k - 2^m).
with a(0)=1, a(1)=2. (End)
a(n) = A059893(A086592(n)), n>0. - Yosu Yurramendi, Apr 09 2016
a(n) = A093873(n) + A093875(n), n > 0. - Yosu Yurramendi, Jul 22 2016
a(n) = A093873(2n) + A093873(2n+1), n > 0; a(n) = A093875(2n) = A093875(2n+1), n > 0. - Yosu Yurramendi, Jul 25 2016
a(n) = sqrt(A071766(2^(m+1)+n)*A229742(2^(m+1)+n) - A071766(2^m+n)*A229742(2^m+n)), for n > 0, where m = floor(log_2(n)+1). - Yosu Yurramendi, Jun 10 2019
a(n) = A007306(A059893(A233279(n))), n > 0. - Yosu Yurramendi, Aug 07 2021
a(n) = A007306(A059894(A006068(n))), n > 0. - Yosu Yurramendi, Sep 29 2021
Conjecture: a(n) = a(floor(n/2)) + Sum_{k=1..A000120(n)} a(b(n, k))*(-1)^(k-1) for n > 0 with a(0) = 1 where b(n, k) = A025480(b(n, k-1) - 1) for n > 0, k > 0 with b(n, 0) = n. - Mikhail Kurkov, Feb 20 2023

A229742 a(n) = A071585(n) - A071766(n).

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 1, 2, 4, 5, 4, 5, 1, 2, 3, 3, 5, 7, 7, 8, 5, 7, 7, 8, 1, 2, 3, 3, 4, 5, 4, 5, 6, 9, 10, 11, 9, 12, 11, 13, 6, 9, 10, 11, 9, 12, 11, 13, 1, 2, 3, 3, 4, 5, 4, 5, 5, 7, 7, 8, 5, 7, 7, 8, 7, 11, 13, 14, 13, 17, 15, 18, 11, 16, 17, 19, 14
Offset: 0

Views

Author

N. J. A. Sloane, Oct 05 2013, at the suggestion of Kevin Ryde

Keywords

Comments

From Yosu Yurramendi, Jun 30 2014: (Start)
If the terms (n>0) are written as an array (left-aligned fashion):
1,
2,1,
3,3, 1, 2,
4,5, 4, 5,1, 2, 3, 3,
5,7, 7, 8,5, 7, 7, 8,1,2, 3, 3,4, 5, 4, 5,
6,9,10,11,9,12,11,13,6,9,10,11,9,12,11,13,1,2,3,3,4,5,4,5,5,7,7,8,5,7,7,8,
then the sum of the k-th row is 3^(k-1) and each column is an arithmetic sequence. The differences of the arithmetic sequences gives the sequence A071585 (a(2^(p+1)+k) - a(2^p+k) = A071585(k), p = 0,1,2,..., k = 0,1,2,...,2^p-1).
The first terms of each column give A071766. The second terms of each column give A086593. So, A086593(n) = A071585(n) + A071766(n).
If the rows (n>0) are written in a right-aligned fashion:
1,
2,1,
3,3,1,2,
4,5,4,5,1,2,3,3,
5,7,7,8,5,7,7,8,1,2,3,3,4,5,4,5,
6,9,10,11,9,12,11,13,6,9,10,11,9,12,11,13,1,2,3,3,4,5,4,5,5,7,7,8,5,7,7,8,
then each column is a Fibonacci sequence (a(2^(p+2)+k) = a(2^(p+1)+k) + a(2^p+k) p = 0,1,2,..., k = 0,1,2,...,2^p-1, with a_k(1) = A071585(k) and a_k(2) = A071766(k) being the first two terms of each column sequence). (End)

Examples

			A229742/A071766 = 0, 1, 2, 1/2, 3, 3/2, 1/3, 2/3, 4, 5/2, 4/3, 5/3, 1/4, 2/5, 3/4, 3/5, 5, 7/2, 7/3, 8/3, 5/4, 7/5, 7/4, 8/5, ... (this is the HCS form of the Stern-Brocot tree).
		

Crossrefs

Programs

  • R
    blocklevel <- 6 # arbitrary
    a <- 1
    for(m in 0:blocklevel) for(k in 0:(2^(m-1)-1)){
      a[2^(m+1)+k]             <- a[2^m+k] + a[2^m+2^(m-1)+k]
      a[2^(m+1)+2^(m-1)+k]     <- a[2^(m+1)+k]
      a[2^(m+1)+2^m+k]         <- a[2^m+2^(m-1)+k]
      a[2^(m+1)+2^m+2^(m-1)+k] <- a[2^m+k]
    }
    a
    # Yosu Yurramendi, Jul 11 2014

Formula

From Yosu Yurramendi, May 26 2019: (Start)
a(2^(m+1)+2^m+k) = A071585( k)
a(2^(m+1) +k) = A071585(2^m+k), m >= 0, 0 <= k < 2^m. (End)
a(n) = A002487(A059893(A006068(n))) = A002487(1+A059893(A233279(n))), n > 0. - Yosu Yurramendi, Sep 29 2021

A233276 a(0)=0, a(1)=1, after which a(2n) = A005187(1+a(n)), a(2n+1) = A055938(a(n)).

Original entry on oeis.org

0, 1, 3, 2, 7, 6, 4, 5, 15, 14, 11, 13, 8, 9, 10, 12, 31, 30, 26, 29, 22, 24, 25, 28, 16, 17, 18, 20, 19, 21, 23, 27, 63, 62, 57, 61, 50, 55, 56, 60, 42, 45, 47, 51, 49, 52, 54, 59, 32, 33, 34, 36, 35, 37, 39, 43, 38, 40, 41, 44, 46, 48, 53, 58, 127, 126, 120
Offset: 0

Views

Author

Antti Karttunen, Dec 18 2013

Keywords

Comments

For all n, a(A000079(n)) = A000225(n+1), i.e. a(2^n) = (2^(n+1))-1.
For n>=1, a(A000225(n)) = A000325(n).
This permutation is obtained by "entangling" even and odd numbers with complementary pair A005187 & A055938, meaning that it can be viewed as a binary tree. Each child to the left is obtained by applying A005187(n+1) to the parent node containing n, and each child to the right is obtained as A055938(n):
0
|
...................1...................
3 2
7......../ \........6 4......../ \........5
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
15 14 11 13 8 9 10 12
31 30 26 29 22 24 25 28 16 17 18 20 19 21 23 27
etc.
For n >= 1, A256991(n) gives the contents of the immediate parent node of the node containing n, while A070939(n) gives the total distance to 0 from the node containing n, with A256478(n) telling how many of the terms encountered on that journey are terms of A005187 (including the penultimate 1 but not the final 0 in the count), while A256479(n) tells how many of them are terms of A055938.
Permutation A233278 gives the mirror image of the same tree.

Crossrefs

Inverse permutation: A233275.
Cf. also A070939 (the binary width of both n and a(n)).
Related arrays: A255555, A255557.
Similarly constructed permutation pairs: A005940/A156552, A135141/A227413, A232751/A232752, A233277/A233278, A233279/A233280, A003188/A006068.

Formula

a(0)=0, a(1)=1, and thereafter, a(2n) = A005187(1+a(n)), a(2n+1) = A055938(a(n)).
As a composition of related permutations:
a(n) = A233278(A054429(n)).

Extensions

Name changed and the illustration of binary tree added by Antti Karttunen, Apr 19 2015

A233277 Permutation of nonnegative integers obtained by entangling complementary pair A005187 & A055938 with odd and even numbers.

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 6, 7, 11, 10, 9, 13, 8, 12, 14, 15, 23, 22, 21, 19, 20, 18, 27, 17, 26, 25, 29, 16, 24, 28, 30, 31, 47, 46, 45, 43, 44, 42, 39, 41, 38, 37, 55, 40, 36, 54, 35, 53, 34, 51, 59, 52, 50, 33, 49, 58, 57, 61, 32, 48, 56, 60, 62, 63, 95, 94, 93, 91
Offset: 0

Views

Author

Antti Karttunen, Dec 18 2013

Keywords

Crossrefs

Inverse permutation: A233278.
Similarly constructed permutation pairs: A135141/A227413, A232751/A232752, A233275/A233276, A233279/A233280, A003188/A006068.

Formula

a(0)=0, a(1)=1, and thereafter, if A079559(n)=0, a(n) = 2*a(A234017(n)), else a(n) = 1+(2*a(A213714(n)-1)).
a(n) = A054429(A233275(n)). [Follows from the definitions of these sequences]

A233278 a(0)=0, a(1)=1, after which a(2n) = A055938(a(n)), a(2n+1) = A005187(1+a(n)).

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 6, 7, 12, 10, 9, 8, 13, 11, 14, 15, 27, 23, 21, 19, 20, 18, 17, 16, 28, 25, 24, 22, 29, 26, 30, 31, 58, 53, 48, 46, 44, 41, 40, 38, 43, 39, 37, 35, 36, 34, 33, 32, 59, 54, 52, 49, 51, 47, 45, 42, 60, 56, 55, 50, 61, 57, 62, 63, 121, 113, 108
Offset: 0

Views

Author

Antti Karttunen, Dec 18 2013

Keywords

Comments

This permutation is obtained by "entangling" even and odd numbers with complementary pair A055938 & A005187, meaning that it can be viewed as a binary tree. Each child to the left is obtained by applying A055938(n) to the parent node containing n, and each child to the right is obtained as A005187(n+1):
0
|
...................1...................
2 3
5......../ \........4 6......../ \........7
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
12 10 9 8 13 11 14 15
27 23 21 19 20 18 17 16 28 25 24 22 29 26 30 31
etc.
For n >= 1, A256991(n) gives the contents of the immediate parent node of the node containing n, while A070939(n) gives the total distance to zero at the root from the node containing n, with A256478(n) telling how many of the terms encountered on that journey are terms of A005187 (including the penultimate 1 but not the final 0 in the count), while A256479(n) tells how many of them are terms of A055938.
Permutation A233276 gives the mirror image of the same tree.

Crossrefs

Inverse permutation: A233277.
Cf. also A070939 (the binary width of both n and a(n)).
Related arrays: A255555, A255557.
Similarly constructed permutation pairs: A005940/A156552, A135141/A227413, A232751/A232752, A233275/A233276, A233279/A233280, A003188/A006068.

Formula

a(0)=0, a(1)=1, and thereafter, a(2n) = A055938(a(n)), a(2n+1) = A005187(1+a(n)).
As a composition of related permutations:
a(n) = A233276(A054429(n)).

Extensions

Name changed and the illustration of binary tree added by Antti Karttunen, Apr 19 2015

A180200 a(0)=0, a(1)=1; for n > 1, a(n) = 2*m + 1 - (n mod 2 + m mod 2) mod 2, where m = a(floor(n/2)).

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 6, 7, 10, 11, 9, 8, 13, 12, 14, 15, 21, 20, 22, 23, 18, 19, 17, 16, 26, 27, 25, 24, 29, 28, 30, 31, 42, 43, 41, 40, 45, 44, 46, 47, 37, 36, 38, 39, 34, 35, 33, 32, 53, 52, 54, 55, 50, 51, 49, 48, 58, 59, 57, 56, 61, 60, 62, 63, 85, 84, 86, 87, 82, 83, 81, 80, 90
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 15 2010

Keywords

Comments

Permutation of the natural numbers with inverse A180201;
A180198(n) = a(a(n));
a(A180199(n)) = A180199(a(n)) = A180201(n);
a(A075427(n)) = A075427(n).
This permutation transforms the enumeration system of positive irreducible fractions A007305/A047679 (Stern-Brocot) into the enumeration system A245325/A245326, and enumeration system A162909/A162910 (Bird) into A071766/A229742 (HCS). - Yosu Yurramendi, Jun 09 2015

Crossrefs

Programs

  • C
    #include 
    int a(int n){
        int m;
        if (n<2){return n;}
        else{
            m=a(n/2);
            return 2*m  + 1 - (n%2 + m%2)%2;
        }
    }
    int main()
    {
        int n=0;
        for(; n<=100; n++)
        printf("%d, ", a(n));
        return 0;
    } /* Indranil Ghosh, Apr 05 2017 */
    
  • Maple
    a:= proc(n) option remember; `if`(n<2, n, (m->
          2*m+1-irem(m+n, 2))(a(iquo(n, 2))))
        end:
    seq(a(n), n=0..72);  # Alois P. Heinz, May 29 2021
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = 2 # + 1 - Mod[Mod[n, 2] + Mod[#, 2], 2] &@ a[Floor[n/2]]; Table[a@ n, {n, 0, 72}] (* Michael De Vlieger, Apr 02 2017 *)
  • PARI
    a(n) = if(n<2, n, my(m=a(n\2)); 2*m + 1 - (n%2 + m%2)%2); \\ Indranil Ghosh, Apr 05 2017
    
  • Python
    def a(n):
        if n<2:return n
        else:
            m=a(n//2)
            return 2*m + 1 - (n%2 + m%2)%2 # Indranil Ghosh, Apr 05 2017
    
  • R
    maxn <- 63 # by choice
    a <- 1
    for(n in 1:maxn){
    a[2*n  ] <- 2*a[n] + (a[n]%%2 == 0)
    a[2*n+1] <- 2*a[n] + (a[n]%%2 != 0)}
    a <- c(0,a)
    # Yosu Yurramendi, May 23 2020

Formula

a(n) = A258746(A233279(n)) = A233279(A117120(n)), n > 0. - Yosu Yurramendi, Apr 10 2017 [Corrected by Yosu Yurramendi, Mar 14 2025]
a(0) = 0, a(1) = 1, for n > 0 a(2*n) = 2*a(n) + [a(n) even], a(2*n + 1) = 2*a(n) + [a(n) odd]. - Yosu Yurramendi, May 23 2020
a(n) = A054429(A154435(n)) = A006068(A054429(n)), n > 0. - Yosu Yurramendi, Jun 05 2021

Extensions

Name edited by Jon E. Schoenfield, Apr 05 2017

A233280 Permutation of nonnegative integers: a(n) = A003188(A054429(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 6, 8, 9, 11, 10, 14, 15, 13, 12, 16, 17, 19, 18, 22, 23, 21, 20, 28, 29, 31, 30, 26, 27, 25, 24, 32, 33, 35, 34, 38, 39, 37, 36, 44, 45, 47, 46, 42, 43, 41, 40, 56, 57, 59, 58, 62, 63, 61, 60, 52, 53, 55, 54, 50, 51, 49, 48, 64, 65, 67, 66
Offset: 0

Views

Author

Antti Karttunen, Dec 18 2013

Keywords

Comments

This permutation transforms the enumeration system of positive irreducible fractions A071766/A229742 (HCS) into the enumeration system A007305/A047679 (Stern-Brocot), and the enumeration system A245325/A245326 into A162909/A162910 (Bird). - Yosu Yurramendi, Jun 09 2015

Crossrefs

Inverse permutation: A233279.
Similarly constructed permutation pairs: A003188/A006068, A135141/A227413, A232751/A232752, A233275/A233276, A233277/A233278, A193231 (self-inverse).

Programs

  • Python
    from sympy import floor
    def a003188(n): return n^(n>>1)
    def a054429(n): return 1 if n==1 else 2*a054429(floor(n/2)) + 1 - n%2
    def a(n): return 0 if n==0 else a003188(a054429(n)) # Indranil Ghosh, Jun 11 2017
  • R
    maxrow <- 8 # by choice
    a <- 1
    for(m in 0:maxrow) for(k in 0:(2^m-1)){
    a[2^(m+1)+    k] <- a[2^m+      k] + 2^m
    a[2^(m+1)+2^m+k] <- a[2^(m+1)-1-k] + 2^(m+1)
    }
    a
    # Yosu Yurramendi, Apr 05 2017
    
  • Scheme
    (define (A233280 n) (A003188 (A054429 n)))
    ;; Alternative version, based on entangling even & odd numbers with odious and evil numbers:
    (definec (A233280 n) (cond ((< n 2) n) ((even? n) (A000069 (+ 1 (A233280 (/ n 2))))) (else (A001969 (+ 1 (A233280 (/ (- n 1) 2)))))))
    

Formula

a(n) = A003188(A054429(n)).
a(n) = A063946(A003188(n)).
a(n) = A054429(A154436(n)).
a(0)=0, a(1)=1, and otherwise, a(2n) = A000069(1+a(n)), a(2n+1) = A001969(1+a(n)). [A recurrence based on entangling even & odd numbers with odious and evil numbers]
a(n) = A258746(A180201(n)) = A180201(A117120(n)), n > 0. - Yosu Yurramendi, Apr 10 2017
Showing 1-10 of 14 results. Next