cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A376682 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the noncomposite numbers (A008578).

Original entry on oeis.org

1, 2, 1, 3, 1, 0, 5, 2, 1, 1, 7, 2, 0, -1, -2, 11, 4, 2, 2, 3, 5, 13, 2, -2, -4, -6, -9, -14, 17, 4, 2, 4, 8, 14, 23, 37, 19, 2, -2, -4, -8, -16, -30, -53, -90, 23, 4, 2, 4, 8, 16, 32, 62, 115, 205, 29, 6, 2, 0, -4, -12, -28, -60, -122, -237, -442, 31, 2, -4, -6, -6, -2, 10, 38, 98, 220, 457, 899
Offset: 0

Views

Author

Gus Wiseman, Oct 15 2024

Keywords

Comments

Row k is the k-th differences of the noncomposite numbers.

Examples

			Array begins:
         n=1:  n=2:  n=3:  n=4:  n=5:  n=6:  n=7:  n=8:  n=9:
  -----------------------------------------------------------
  k=0:    1     2     3     5     7    11    13    17    19
  k=1:    1     1     2     2     4     2     4     2     4
  k=2:    0     1     0     2    -2     2    -2     2     2
  k=3:    1    -1     2    -4     4    -4     4     0    -6
  k=4:   -2     3    -6     8    -8     8    -4    -6    14
  k=5:    5    -9    14   -16    16   -12    -2    20   -28
  k=6:  -14    23   -30    32   -28    10    22   -48    48
  k=7:   37   -53    62   -60    38    12   -70    96   -70
  k=8:  -90   115  -122    98   -26   -82   166  -166    86
  k=9:  205  -237   220  -124   -56   248  -332   252   -86
Triangle begins:
    1
    2    1
    3    1    0
    5    2    1    1
    7    2    0   -1   -2
   11    4    2    2    3    5
   13    2   -2   -4   -6   -9  -14
   17    4    2    4    8   14   23   37
   19    2   -2   -4   -8  -16  -30  -53  -90
   23    4    2    4    8   16   32   62  115  205
   29    6    2    0   -4  -12  -28  -60 -122 -237 -442
   31    2   -4   -6   -6   -2   10   38   98  220  457  899
		

Crossrefs

The version for modern primes (A000040) is A095195.
Initial rows: A008578, A075526, A036263 with 0 prepended.
Column n = 1 is A030016 (modern A007442).
A version for partitions is A175804, cf. A053445, A281425, A320590.
Antidiagonal-sums are A376683 (modern A140119), absolute A376684 (modern A376681).
First position of 0 is A376855 (modern A376678).
For composite instead of prime we have A377033.
For squarefree instead of prime we have A377038, nonsquarefree A377046.
For prime-power instead of composite we have A377051.
A000040 lists the primes, differences A001223, second A036263.

Programs

  • Mathematica
    nn=12;
    t=Table[Take[Differences[NestList[NestWhile[#+1&, #+1,!PrimeQ[#]&]&,1,2*nn],k],nn],{k,0,nn}]
    (* or *)
    nn=12;
    q=Table[If[n==0,1,Prime[n]],{n,0,2nn}];
    Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[i+k]],{k,0,j}],{j,0,nn},{i,nn}]

Formula

A(i,j) = Sum_{k=0..j} (-1)^(j-k) binomial(j,k) A008578(i+k).

A376683 Antidiagonal-sums of the array A376682(n,k) = n-th term of the k-th differences of the noncomposite numbers (A008578).

Original entry on oeis.org

1, 3, 4, 9, 6, 27, -20, 109, -182, 471, -868, 1737, -2872, 4345, -4700, 1133, 14060, -55275, 150462, -346093, 717040, -1369351, 2432872, -4002905, 5964846, -7524917, 6123130, 4900199, -40900410, 134309057, -348584552, 798958881, -1678213106, 3277459119
Offset: 0

Views

Author

Gus Wiseman, Oct 15 2024

Keywords

Examples

			The fourth anti-diagonal of A376682 is: (7, 2, 0, -1, -2), so a(4) = 6.
		

Crossrefs

The modern version (for A000040 instead of A008578) is A140119.
The absolute version is A376681.
Antidiagonal-sums of A376682 (modern version A095195).
For composite instead of noncomposite we have A377033.
For squarefree instead of noncomposite we have A377038, nonsquarefree A377046.
A000040 lists the modern primes, differences A001223, second A036263.
A008578 lists the noncomposites, first differences A075526.

Programs

  • Mathematica
    nn=12;
    t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,!PrimeQ[#]&]&,1,2*nn],k],nn],{k,0,nn}];
    Total/@Table[t[[j,i-j+1]],{i,nn},{j,i}]

A377037 Position of first zero in the n-th differences of the composite numbers (A002808), or 0 if it does not appear.

Original entry on oeis.org

1, 14, 2, 65, 1, 83, 2, 7, 1, 83, 2, 424, 12, 32, 11, 733, 10, 940, 9, 1110, 8, 1110, 7, 1110, 6, 1110, 112, 1110, 111, 1110, 110, 2192, 109, 13852, 108, 13852, 107, 13852, 106, 13852, 105, 17384, 104, 17384, 103, 17384, 102, 17384, 101, 27144, 552, 28012, 551
Offset: 2

Views

Author

Gus Wiseman, Oct 17 2024

Keywords

Examples

			The third differences of the composite numbers are:
  -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -2, 1, 0, 0, 1, -1, -1, ...
so a(3) = 14.
		

Crossrefs

The version for prime instead of composite is A376678.
For noncomposite numbers we have A376855.
This is the first position of 0 in row n of the array A377033.
For squarefree instead of composite we have A377042, nonsquarefree A377050.
For prime-power instead of composite we have A377055.
Other arrays of differences: A095195 (prime), A376682 (noncomposite), A377033 (composite), A377038 (squarefree), A377046 (nonsquarefree), A377051 (prime-power).
A000040 lists the primes, differences A001223, second A036263.
A002808 lists the composite numbers, differences A073783, second A073445.
A008578 lists the noncomposites, differences A075526.
A377036 gives first term of the n-th differences of the composite numbers, for primes A007442 or A030016.

Programs

  • Mathematica
    nn=10000;
    u=Table[Differences[Select[Range[nn],CompositeQ],k],{k,2,16}];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    m=Table[Position[u[[k]],0][[1,1]],{k,mnrm[Union[First/@Position[u,0]]]}]

Extensions

Offset 2 from Michel Marcus, Oct 18 2024
a(17)-a(54) from Alois P. Heinz, Oct 18 2024

A376681 Row sums of the absolute value of the array A095195(n, k) = n-th term of the k-th differences of the prime numbers (A000040).

Original entry on oeis.org

2, 4, 8, 10, 22, 36, 72, 134, 266, 500, 874, 1418, 2044, 2736, 4626, 15176, 41460, 95286, 196368, 372808, 660134, 1092790, 1682198, 2384724, 3147706, 4526812, 11037090, 36046768, 93563398, 214796426, 452129242, 885186658, 1619323680, 2763448574, 4368014812
Offset: 1

Views

Author

Gus Wiseman, Oct 15 2024

Keywords

Examples

			The fourth row of A095195 is: (7, 2, 0, -1), so a(4) = 10.
		

Crossrefs

For firsts instead of row-sums we have A007442 (modern version of A030016).
This is the absolute version of A140119.
If 1 is considered prime (A008578) we get A376684, absolute version of A376683.
For first zero-positions we have A376678 (modern version of A376855).
For composite instead of prime we have A377035.
For squarefree instead of prime we have A377040, nonsquarefree A377048.
A000040 lists the modern primes, differences A001223, seconds A036263.
A008578 lists the noncomposites, differences A075526, seconds A036263 with 0 prepended.

Programs

  • Mathematica
    nn=15;
    t=Table[Take[Differences[NestList[NestWhile[#+1&, #+1,!PrimeQ[#]&]&,2,2*nn],k],nn],{k,0,nn}]
    Total/@Abs/@Table[t[[j,i-j+1]],{i,nn},{j,i}]

Extensions

More terms from Pontus von Brömssen, Oct 17 2024

A376684 Antidiagonal-sums of the absolute value of the array A376682(n,k) = n-th term of the k-th differences of the noncomposite numbers (A008578).

Original entry on oeis.org

1, 3, 4, 9, 12, 27, 50, 109, 224, 471, 942, 1773, 3118, 4957, 7038, 9373, 16256, 55461, 150622, 346763, 718972, 1377101, 2462220, 4114987, 6387718, 9112455, 12051830, 17160117, 40946860, 134463917, 349105370, 800713921, 1684145408, 3297536923, 6040907554
Offset: 0

Views

Author

Gus Wiseman, Oct 15 2024

Keywords

Examples

			The fourth antidiagonal of A376682 is: (7, 2, 0, -1, -2), so a(4) = 12.
		

Crossrefs

For the modern primes (A000040) we have A376681, absolute version of A140119.
For firsts instead of row-sums we have A030016, modern A007442.
These are the antidiagonal-sums of the absolute value of A376682 (modern A095195).
This is the absolute version of A376683.
For first zero-positions we have A376855, modern A376678.
A000040 lists the modern primes, differences A001223, seconds A036263.
A008578 lists the noncomposites, first differences A075526.

Programs

  • Mathematica
    nn=12;
    t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,!PrimeQ[#]&]&,1,2*nn],k],nn],{k,0,nn}];
    Total/@Table[Abs[t[[j,i-j+1]]],{i,nn},{j,i}]

A056221 Image of primes (A000040) under "little Hankel" transform that sends [c_0, c_1, ...] to [d_0, d_1, ...] where d_n = c_n^2 - c_{n+1}*c_{n-1}.

Original entry on oeis.org

-1, 4, -6, 30, -18, 42, -30, -22, 128, -112, 98, 90, -78, -70, 36, 248, -232, 158, 150, -280, 182, -142, -130, 420, 210, -198, 222, -210, -1074, 1326, -238, 560, -1092, 1212, -592, 36, 350, -310, 36, 728, -1428, 1548, -378, 402, -1966, 144, 1832, 462, -450, -442
Offset: 1

Views

Author

N. J. A. Sloane, Aug 06 2000

Keywords

Comments

a(n) > 0 if and only if n+1 is in A046868. a(n) < 0 if and only if n+1 is in A233671. - Chai Wah Wu, Sep 10 2019

Crossrefs

Programs

  • Maple
    A056221 := proc(n)
            ithprime(n+1)^2-ithprime(n)*ithprime(n+2) ;
    end proc:
    seq(A056221(n),n=1..10) ; # R. J. Mathar, Dec 10 2011
  • Mathematica
    a[n_]:=Prime[n+1]^2-Prime[n]Prime[n+2]; Array[a,50] (* Stefano Spezia, Jul 15 2024 *)

Formula

a(n) = determinant of matrix
| prime(n+1) prime(n)|
| prime(n+2) prime(n+1)|. - Zak Seidov, Jul 23 2008, indices corrected by Gary Detlefs, Dec 09 2011
a(n) = 2*A342567(n+1) for n >= 2. - Hugo Pfoertner, Jun 20 2021

A358529 Indices of the primes in A358528.

Original entry on oeis.org

3, 5, 7, 9, 10, 12, 15, 16, 19, 22, 24, 25, 28, 30, 31, 33, 35, 37, 40, 43, 45, 47, 51, 52, 54, 59, 62, 63, 66, 67, 69, 71, 72, 73, 77, 78, 80, 81, 83, 85, 87, 88, 91, 92, 95, 97, 98, 100, 102, 106, 107, 111, 115, 118, 119, 122, 124, 125, 126, 128, 133, 136
Offset: 1

Views

Author

Clark Kimberling, Nov 21 2022

Keywords

Comments

This sequence, together with A358531 and A356347, partition the set of positive integers >= 3.

Examples

			  n      1   2   3   4   5   6   7
  k      3   5   7   9  10  12  15
  p(n)   5  11  17  23  29  37  47
		

Crossrefs

Programs

  • Mathematica
    t = Select[2 + Range[140],
    Prime[#] - Prime[# - 1] > Prime[# - 1] - Prime[# - 2] &]  (* A358529 *)
    Prime[t]  (* A358528 *)

Formula

a(n) = A233671(n) + 1.
Showing 1-7 of 7 results.