cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A219086 a(n) = floor((n + 1/2)^4).

Original entry on oeis.org

0, 5, 39, 150, 410, 915, 1785, 3164, 5220, 8145, 12155, 17490, 24414, 33215, 44205, 57720, 74120, 93789, 117135, 144590, 176610, 213675, 256289, 304980, 360300, 422825, 493155, 571914, 659750, 757335, 865365, 984560, 1115664
Offset: 0

Views

Author

Clark Kimberling, Jan 01 2013

Keywords

Comments

a(n) is the number k such that {k^p} < 1/2 < {(k+1)^p}, where p = 1/4 and { } = fractional part. Equivalently, the jump sequence of f(x) = x^(1/4), in the sense that these are the nonnegative integers k for which round(k^p) < round((k+1)^p). For details and a guide to related sequences, see A219085.
-4*a(n) gives the real part of (n+n*i)*((n+1)+n*i)*(n+(n+1)*i)*((n+1)+(n+1)*i). The imaginary part is always zero. - Jon Perry, Feb 05 2014
Numbers k such that 16*k+1 is a fourth power. - Bruno Berselli, May 29 2018
The row sums of "Floyd's Triangle", which is a triangular array of natural numbers beginning with the number 1, produce the sequence A006003. A006003 can be bisected to get the Rhombic Dodecahedron Sequence A005917, whose n-th partial sum is n^4, and A317297, whose n-th partial sum is a(n). Interleave n^4 or A000583 back with {a(n)} to get A011863, whose first differences are A019298. Finally, A011863(n)-A011863(n-2) = A006003(n-1). - Bruce J. Nicholson, Dec 22 2019

Examples

			0^(1/4) = 0.000...; 1^(1/4) = 1.000...
5^(1/4) = 1.495...; 6^(1/4) = 1.565...
39^(1/4) = 2.499...; 40^(1/4) = 2.514...
		

Crossrefs

Programs

Formula

G.f.: (5*x^3 + 14*x^2 + 5*x)/(1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = (2*n^4 + 4*n^3 + 3*n^2 + n)/2. - J. M. Bergot, Apr 05 2014
a(n) = Sum_{i=0..n} i*(4*i^2 + 1) = n*(n + 1)*(2*n^2 + 2*n + 1)/2. - Bruno Berselli, Feb 09 2017
a(n) = lcm((2*n + 1)^2 - 1, (2*n + 1)^2 + 1)/8 for n>=1. - Lechoslaw Ratajczak, Mar 26 2017
a(n) = A000217(n) * A001844(n). - Bruce J. Nicholson, May 14 2017
E.g.f.: (1/2)*exp(x)*x*(10 + 29*x + 16*x^2 + 2*x^3). - Stefano Spezia, Dec 27 2019
a(n) = ((2*n+1)^4 - 1)/16. - Jianing Song, Jan 03 2023
Sum_{n>=1} 1/a(n) = 6 - 2*Pi*tanh(Pi/2). - Amiram Eldar, Jan 08 2023

A234460 Imaginary part of the product of all the integer complex numbers in the square [1,1] to [n,n].

Original entry on oeis.org

1, 0, 7800, 0, 2787453552000000, 0, 3108366378804858902744832000000000000, 0, 165290679439545659068950724771043004678057040281600000000000000000000, 0
Offset: 1

Views

Author

Jon Perry, Dec 26 2013

Keywords

Examples

			For n = 2, we have (1 + i)(1 + 2i)(2 + i)(2 + 2i) which gives -20 + 0i, so a(2) = 0.
		

Crossrefs

Programs

  • JavaScript
    function cNumber(x, y) {
    return [x, y];
    }
    function cMult(a, b) {
    return [a[0] * b[0] - a[1] * b[1], a[0] * b[1] + a[1] * b[0]];
    }
    for (i = 1; i < 10; i++) {
    c = cNumber(1, 0);
    for (j = 1; j <= i; j++)
    for (k = 1; k <= i; k++)
    c = cMult(c, cNumber(j, k));
    document.write(c + "
    "); }
  • Mathematica
    Table[Im[Times@@Flatten[Table[a + b I, {a, n}, {b, n}]]], {n, 20}]
  • PARI
    a(n) = imag(prod(i=1, n, prod(j=1, n, i+I*j))); \\ Michel Marcus, Dec 31 2013

Formula

For n even, a(n) = 0, and for n odd, a(n) = A234459(n). - Michel Marcus, Dec 31 2013

A236988 Real part of the product of all the Gaussian integers in the rectangle [1, 1] to [2, n].

Original entry on oeis.org

1, -20, 140, 200, -67600, 3983200, -228488000, 14375920000, -1002261520000, 74864404160000, -5398716356800000, 221997813232000000, 54286859023072000000, -27326116497867200000000, 9481971502321385600000000, -3155347494162485190400000000
Offset: 1

Views

Author

Jon Perry, Feb 02 2014

Keywords

Comments

By Gaussian integers, we mean complex numbers of the form a + bi, where both a and b are integers in Z, i = sqrt(-1). Thus the quadratic integer ring under consideration here is Z[i].

Examples

			For n = 2, we have (1 + i)(1 + 2i)(2 + i)(2 + 2i) which gives -20 + 0i, so a(2) = -20.
		

Crossrefs

Programs

  • JavaScript
    function cNumber(x, y) {
    return [x, y];
    }
    function cMult(a, b) {
    return [a[0] * b[0] - a[1] * b[1], a[0] * b[1] + a[1] * b[0]];
    }
    for (i = 1; i < 20; i++) {
    c = cNumber(1, 0);
    for (j = 1; j <= 2; j++)
    for (k = 1; k <= i; k++)
    c = cMult(c, cNumber(j, k));
    document.write(c[0] + ", ");
    }
    
  • Mathematica
    Table[Re[Times@@Flatten[Table[a + b I, {a, 2}, {b, n}]]], {n, 20}] (* Alonso del Arte, Feb 02 2014 *)
  • PARI
    a(n) = real(prod(i=1, 2, prod(j=1, n, i+I*j))); \\ Michel Marcus, Feb 03 2014

Formula

a(n) +(2*n+3)*(n-2)*a(n-1) +n*(n+1)*(n^2-4*n+8)*a(n-2) -2*(n^2-4*n+8)*(n^2-4*n+5)*a(n-3)=0. - R. J. Mathar, Feb 08 2014
Showing 1-3 of 3 results.