3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 91, 92
Offset: 1
A237290
Sum of positive numbers k <= sigma(n) that are a sum of any subset of distinct divisors of n.
Original entry on oeis.org
1, 6, 8, 28, 12, 78, 16, 120, 52, 144, 24, 406, 28, 192, 192, 496, 36, 780, 40, 903, 256, 288, 48, 1830, 124, 336, 320, 1596, 60, 2628, 64, 2016, 384, 432, 384, 4186, 76, 480, 448, 4095, 84, 4656, 88, 2688, 2184, 576, 96, 7750, 228, 2976, 576, 3136, 108, 7260
Offset: 1
For n = 5, a(5) = 1 + 5 + 6 = 12 (each of the numbers 1, 5 and 6 is the sum of a subset of distinct divisors of 5).
The numbers n = 14 and 15 is an interesting pair of consecutive numbers with identical value of sigma(n) such that simultaneously a(14) = a(15) and A237289(14) = A237289(15).
a(14) = 1+2+3+7+8+9+10+14+15+16+17+21+22+23+24 = a(15) = 1+3+4+5+6+8+9+15+16+18+19+20+21+23+24 = 192.
-
isSumDist := proc(n,k)
local dvs,s ;
dvs := numtheory[divisors](n) ;
for s in combinat[powerset](dvs) do
add(m,m=op(s)) ;
if % = k then
return true;
end if;
end do:
false ;
end proc:
A237290 := proc(n)
local a;
a := 0 ;
for k from 1 to numtheory[sigma](n) do
if isSumDist(n,k) then
a := a+k;
end if;
end do:
end proc:
seq(A237290(n),n=1..20) ; # R. J. Mathar, Mar 13 2014
-
a[n_] := Plus @@ Union[Plus @@@ Subsets@ Divisors@ n]; Array[a, 54] (* Giovanni Resta, Mar 13 2014 *)
-
padbin(n, len) = {b = binary(n); while(length(b) < len, b = concat(0, b);); b;}
a(n) = {vks = []; d = divisors(n); nbd = #d; for (i=1, 2^nbd-1, b = padbin(i, nbd); onek = sum(j=1, nbd, d[j]*b[j]); vks = Set(concat(vks, onek));); sum(i=1, #vks, vks[i]);} \\ Michel Marcus, Mar 09 2014
-
A237290(n) = { my(c=[0]); fordiv(n,d, c = Set(concat(c,vector(#c,i,c[i]+d)))); vecsum(c); }; \\ after Chai Wah Wu's Python-code, Antti Karttunen, Nov 29 2024
-
from sympy import divisors
def A237290(n):
ds = divisors(n)
c, s = {0}, sum(ds)
for d in ds:
c |= {a+d for a in c}
return sum(a for a in c if 1<=a<=s) # Chai Wah Wu, Jul 05 2023
A237289
Sum of positive numbers k <= sigma(n) that are not a sum of any subset of distinct divisors of n.
Original entry on oeis.org
0, 0, 2, 0, 9, 0, 20, 0, 39, 27, 54, 0, 77, 108, 108, 0, 135, 0, 170, 0, 272, 378, 252, 0, 372, 567, 500, 0, 405, 0, 464, 0, 792, 1053, 792, 0, 665, 1350, 1148, 0, 819, 0, 902, 882, 897, 2052, 1080, 0, 1425, 1395, 2052, 1715, 1377, 0, 2052, 0, 2600, 3375, 1710
Offset: 1
For n = 5, a(5) = 2 + 3 + 4 = 9 (numbers 2, 3 and 4 are not a sum of any subset of distinct divisors of 5).
Numbers n = 14 and 15 are an interesting pair of consecutive numbers with identical value of sigma(n) such that simultaneously a(14) = a(15) and A237290(14) = A237290(15).
a(14) = 4+5+6+11+12+13+18+19+20 = a(15) = 2+7+10+11+12+13+14+17+22 = 108.
a(6) = 0 as 6 is practical; the sums into distinct divisors from 1 through 12 are 1 = 1, 2 = 2, 3 = 3, 4 = 1 + 3, 5 = 2 + 3, 6 = 1 + 2 + 3, 7 through 12 are (1 through 6) + 6. So none are not a sum distinct divisors of 6. - _David A. Corneth_, Jul 22 2025
-
isSumDist := proc(n,k)
local dvs ;
dvs := numtheory[divisors](n) ;
for s in combinat[powerset](dvs) do
add(m,m=op(s)) ;
if % = k then
return true;
end if;
end do:
false ;
end proc:
A237289 := proc(n)
local a;
a := 0 ;
for k from 1 to numtheory[sigma](n) do
if not isSumDist(n,k) then
a := a+k;
end if;
end do:
a ;
end proc:
seq(A237289(n),n=1..20) ; # R. J. Mathar, Mar 13 2014
-
a[n_] := Block[{d = Divisors@n, s}, s = Plus @@ d; s*(s + 1)/2 - Plus @@ Union[Plus @@@ Subsets@d]]; m = Array[a, 59] (* Giovanni Resta, Mar 13 2014 *)
-
from sympy import divisors
def A237289(n):
ds = divisors(n)
c, s = {0}, sum(ds)
for d in ds:
c |= {a+d for a in c}
return (s*(s+1)>>1)-sum(a for a in c if 1<=a<=s) # Chai Wah Wu, Jul 05 2023
A307223
Irregular table T(n, k) read by rows: n-th row gives number of subsets of the divisors of n which sum to k for 1 <= k <= sigma(n).
Original entry on oeis.org
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1
Offset: 1
Table begins as:
1
1,1,1
1,0,1,1
1,1,1,1,1,1,1
1,0,0,0,1,1
1,1,2,1,1,2,1,1,2,1,1,1
1,0,0,0,0,0,1,1
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
1,0,1,1,0,0,0,0,1,1,0,1,1
1,1,1,0,1,1,1,1,0,1,1,1,1,0,1,1,1,1
-
T[n_,k_] := Module[{d = Divisors[n]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, k}], k]]; Table[T[n, k], {n,1,10}, {k, 1, DivisorSigma[1,n]}] // Flatten
A378450
a(n) is the number of positive numbers k <= sigma(n) that are not a sum of any subset of distinct divisors of n.
Original entry on oeis.org
0, 0, 1, 0, 3, 0, 5, 0, 6, 3, 9, 0, 11, 9, 9, 0, 15, 0, 17, 0, 17, 21, 21, 0, 24, 27, 25, 0, 27, 0, 29, 0, 33, 39, 33, 0, 35, 45, 41, 0, 39, 0, 41, 21, 23, 57, 45, 0, 50, 30, 57, 35, 51, 0, 57, 0, 65, 75, 57, 0, 59, 81, 45, 0, 69, 0, 65, 63, 81, 2, 69, 0, 71, 99, 61, 77, 81, 0, 77, 0, 90, 111, 81, 0, 93, 117, 105
Offset: 1
For n = 3, with divisors [1, 3] and sigma(3)=4, only 2 in range 1..4 cannot be represented as a sum of a subset of [1, 3], therefore a(3) = 1.
For n = 15, with divisors [1, 3, 5, 15] and sigma(15) = 24, the subset sums are 1, 3, 1+3, 5, 1+5, 3+5, 1+3+5, 15, 1+15, 3+15, 1+3+15, 5+15, 1+5+15, 3+5+15, 1+3+5+15 i.e., [1, 3, 4, 5, 6, 8, 9, 15, 16, 18, 19, 20, 21, 23, 24], which leaves 2, 7, 10, 11, 12, 13, 14, 17, 22 as unrepresented numbers, therefore a(15) = 9.
-
A119347(n) = { my(c=[0]); fordiv(n,d, c = Set(concat(c,vector(#c,i,c[i]+d)))); (#c)-1; };
A378450(n) = (sigma(n)-A119347(n));
A335030
Numbers m that are not practical and have an abundancy index sigma(m)/m which is larger than that of any smaller number that is not practical.
Original entry on oeis.org
3, 9, 10, 44, 70, 102, 350, 372, 1608, 3492, 6096, 10380, 44040, 100260, 180240, 425160, 1744560, 2425080, 5509980, 10048080, 23614920, 97639920, 396315360, 900229680, 2519017200, 3113704440, 12870562320, 52307529120
Offset: 1
The first 5 numbers that are not practical are m = 3, 5, 7, 9, 10. Their abundancy indices sigma(m)/m are 1.333..., 1.2, 1.142..., 1.444..., 1.8. The record values occur at 3, 9 and 10.
-
f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[fct_] := (ind = Position[fct[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@fct]), _?(# > 1 &)]) == {}; seq = {}; rm = 1; Do[fct = FactorInteger[n]; r = Times@@((First/@fct^ (1+Last/@ fct)-1)/(First/@fct-1))/n; If[r > rm && !pracQ[fct], rm = r; AppendTo[seq, n]], {n, 3, 10^5}]; seq
A378471
Numbers m whose symmetric representation of sigma(m), SRS(m), has at least 2 parts the first of which has width 1.
Original entry on oeis.org
3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 98, 99, 101, 103, 105
Offset: 1
a(5) = 10 is in the sequence since SRS(10) = {9, 9} consists of 2 parts of width 1 and of sizes 9 = (2^2 - 1)(5+1)/2.
a(15) = 25 is in the sequence since the first part of SRS(25) = {13, 5, 13} has width 1 and has size 13 = (2^1 - 1)(25+1)/2.
a(28) = 44 is in the sequence since SRS(44) = {42, 42} has width 1 and has size 42 = (2^3 - 1)(11+1)/2.
The upper left hand 11 X 11 section of array T(j, k) shows the j-th number m in this sequence of the form m = 2^k * q with q odd. The first part of SRS(m) of every number in column k consists of 2^(k+1) - 1 legs of width 1.
j\k| 0 1 2 3 4 5 6 7 8 9 10 ...
------------------------------------------------------------------------
1 | 3 10 44 136 592 2144 8384 32896 133376 527872 2102272
2 | 5 14 52 152 656 2272 8768 33664 133888 528896 2112512
3 | 7 22 68 184 688 2336 8896 34432 138496 531968 2118656
4 | 9 26 76 232 752 2528 9536 34688 140032 537088 2130944
5 | 11 34 92 248 848 2656 9664 35456 142592 538112 2132992
6 | 13 38 116 296 944 2848 10048 35968 144128 543232 2137088
7 | 15 46 124 328 976 3104 10432 36224 145664 544256 2139136
8 | 17 50 148 344 1072 3232 10688 37504 146176 547328 2149376
9 | 19 58 164 376 1136 3296 11072 39296 147712 556544 2161664
10 | 21 62 172 424 1168 3424 11456 39808 150272 558592 2163712
11 | 23 70 188 472 1264 3488 11584 40064 151808 559616 2180096
...
Row 1 is A246956(n), n>=1.
Column 0 is A005408(n) with T(j + 1, 0) = T(j, 0) + 2, n>=1.
Column 1 is A091999(n) with T(j + 2, 1) = T(j, 1) + 12, n>=2.
Column 2 is A270298(n) with T(j + 48, 2) = T(j, 2) + 840, n>=1.
Column 3 is A270301(n) with T(j + 5760, 3) = T(j, 3) + 240240, n>=1.
Cf.
A000079,
A005408,
A091999,
A235791,
A237287,
A237591,
A237593,
A238524,
A246956,
A270298,
A270301,
A341969,
A370206,
A377654.
-
(* partsSRS[] and widthPattern[ ] are defined in A377654 *)
a378471[m_, n_] := Select[Range[m, n], Length[partsSRS[#]]>1&&widthPattern[#][[1;;2]]=={1, 0}&]
a378471[1, 105]
Comments