cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A383959 The number of prime powers p^e having the property that e is a unitary divisor of the p-adic valuation of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 3, 2, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 4, 1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 3, 2, 3, 2, 3, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 3, 4, 2, 3, 1, 3, 2, 3, 1, 4, 1, 2, 3, 3, 2, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Amiram Eldar, May 16 2025

Keywords

Comments

First differs from A238949 at n = 64.
First differs from A383960 at n = 256.
Also, the number of prime powers p^e having the property that e is a squarefree divisor of the p-adic valuation of n.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 2^PrimeNu[e]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecsum(apply(x -> 1 << omega(x), factor(n)[, 2]));

Formula

Additive with a(p^e) = A034444(e) = 2^A001221(e).
Sum_{k=1..n} a(k) ~ n*(log(log(n)) + B - C + D), where B is Mertens's constant (A077761), C = Sum_{p prime} 1/p^2 (A085548), and D = Sum_{p prime, e>=2} (1-1/p)*A034444(e)/p^e = 0.92341081050532387352... .

A110475 Number of symbols '*' and '^' to write the canonical prime factorization of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 2, 1, 1, 1, 2, 0, 2, 0, 1, 1, 1, 1, 3, 0, 1, 1, 2, 0, 2, 0, 2, 2, 1, 0, 2, 1, 2, 1, 2, 0, 2, 1, 2, 1, 1, 0, 3, 0, 1, 2, 1, 1, 2, 0, 2, 1, 2, 0, 3, 0, 1, 2, 2, 1, 2, 0, 2, 1, 1, 0, 3, 1, 1, 1, 2, 0, 3, 1, 2, 1, 1, 1, 2, 0, 2, 2, 3, 0, 2, 0, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 08 2005

Keywords

Comments

It is conjectured that 1,2,3,4,5,6,7,9,11 are the only positive integers which cannot be represented as the sum of two elements of indices n such that a(n) = 1. - Jonathan Vos Post, Sep 11 2005
a(n) = 2 iff n is a sphenic number (A007304) or n is a prime p times a prime power q^e with e > 1 and q not equal to p. a(n) = 3 iff n has exactly four distinct prime factors (A046386); or n is the product of two prime powers (p^e)*(q^f) with e > 1, f > 1 and p not equal to q; or n is a semiprime s times a prime power r^g with g > 1 and r relatively prime to s. For a(n) > 3, Reinhard Zumkeller's description is a simpler description than the above compound descriptions. - Jonathan Vos Post, Sep 11 2005

Examples

			a(208029250) = a(2*5^3*11^2*13*23^2) = 4 '*' + 3 '^' = 7.
		

Crossrefs

Programs

  • Haskell
    a110475 1 = 0
    a110475 n = length us - 1 + 2 * length vs where
                (us, vs) = span (== 1) $ a118914_row n
    -- Reinhard Zumkeller, Mar 23 2014
  • Mathematica
    A110475[n_] := 2*Length[#] - 1 - Count[#, 1] & [FactorInteger[n][[All, 2]]];
    Array[A110475, 100] (* Paolo Xausa, Mar 10 2025 *)

Formula

a(n) = A001221(n) - 1 + A056170(n) for n > 1.
a(n) = 0 iff n=1 or n is prime: a(A008578(n)) = 0.
a(n) = 1 iff n is a semiprime or a prime power p^e with e > 1.
From Amiram Eldar, Sep 27 2024: (Start)
a(n) = A238949(n) - 1 for n >= 2.
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C - 1), where B is Mertens's constant (A077761) and C = Sum_{p prime} 1/p^2 (A085548). (End)

A238956 Degree of divisor lattice in graded colexicographic order.

Original entry on oeis.org

0, 1, 2, 2, 2, 3, 3, 2, 3, 4, 4, 4, 2, 3, 4, 4, 5, 5, 5, 2, 3, 4, 4, 4, 5, 6, 5, 6, 6, 6, 2, 3, 4, 4, 4, 5, 5, 6, 5, 6, 7, 6, 7, 7, 7, 2, 3, 4, 4, 4, 4, 5, 5, 6, 6, 5, 6, 6, 7, 8, 6, 7, 8, 7, 8, 8, 8, 2, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 9, 7, 8, 9, 8, 9, 9, 9
Offset: 0

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Examples

			Triangle T(n,k) begins:
  0;
  1;
  2, 2;
  2, 3, 3;
  2, 3, 4, 4, 4;
  2, 3, 4, 4, 5, 5, 5;
  2, 3, 4, 4, 4, 5, 6, 5, 6, 6, 6;
  ...
		

Crossrefs

Cf. A238949 in graded colexicographic order.

Programs

  • PARI
    C(sig)={sum(i=1, #sig, if(sig[i]>1, 2, 1))}
    Row(n)={apply(C, [Vecrev(p) | p<-partitions(n)])}
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Apr 01 2020

Formula

T(n,k) = A238949(A036035(n,k)).

Extensions

Offset changed and terms a(50) and beyond from Andrew Howroyd, Apr 01 2020

A238969 Degree of divisor lattice in divisor lattice in canonical order.

Original entry on oeis.org

0, 1, 2, 2, 2, 3, 3, 2, 3, 4, 4, 4, 2, 3, 4, 4, 5, 5, 5, 2, 3, 4, 4, 4, 5, 5, 6, 6, 6, 6, 2, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 2, 3, 4, 4, 4, 5, 5, 4, 5, 6, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 2, 3, 4, 4, 4, 5, 5, 4, 5, 6, 6, 6, 5, 6, 6, 7, 7, 7, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9
Offset: 0

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Examples

			Triangle T(n,k) begins:
  0;
  1;
  2, 2;
  2, 3, 3;
  2, 3, 4, 4, 4;
  2, 3, 4, 4, 5, 5, 5;
  2, 3, 4, 4, 4, 5, 5, 6, 6, 6, 6;
  ...
		

Crossrefs

Cf. A238956 in canonical order.

Programs

  • PARI
    C(sig)={sum(i=1, #sig, if(sig[i]>1, 2, 1))}
    Row(n)={apply(C, vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 26 2020

Formula

T(n,k) = A238949(A063008(n,k)). - Andrew Howroyd, Mar 26 2020

Extensions

Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 26 2020

A383960 The number of prime powers p^e having the property that e is an infinitary divisor of the p-adic valuation of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 3, 2, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 4, 1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 3, 2, 3, 2, 3, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 3, 4, 2, 3, 1, 3, 2, 3, 1, 4, 1, 2, 3, 3, 2, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Amiram Eldar, May 16 2025

Keywords

Comments

First differs from A238949 at n = 64.
First differs from A383959 at n = 256.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[e, 2, 1]; d[1] = 1; d[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 0; ff[p_, e_] := d[e]; a[n_] := Plus @@ ff @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    d(n) = vecprod(apply(x -> 1 << hammingweight(x), factor(n)[, 2]));
    a(n) = vecsum(apply(x -> d(x), factor(n)[, 2]));

Formula

Additive with a(p^e) = A037445(e).
Sum_{k=1..n} a(k) ~ n*(log(log(n)) + B - C + D), where B is Mertens's constant (A077761), C = Sum_{p prime} 1/p^2 (A085548), and D = Sum_{p prime, e>=2} (1-1/p)*A037445(e)/p^e = 0.92752481299257205938... .

A348477 Drop all 1 but the first 1 in A035306.

Original entry on oeis.org

1, 2, 3, 2, 2, 5, 2, 3, 7, 2, 3, 3, 2, 2, 5, 11, 2, 2, 3, 13, 2, 7, 3, 5, 2, 4, 17, 2, 3, 2, 19, 2, 2, 5, 3, 7, 2, 11, 23, 2, 3, 3, 5, 2, 2, 13, 3, 3, 2, 2, 7, 29, 2, 3, 5, 31, 2, 5, 3, 11, 2, 17, 5, 7, 2, 2, 3, 2, 37, 2, 19, 3, 13, 2, 3, 5, 41, 2, 3, 7, 43, 2, 2, 11, 3, 2, 5, 2, 23, 47, 2, 4, 3, 7, 2, 2, 5, 2, 3, 17, 2, 2, 13, 53, 2, 3, 3, 5, 11, 2, 3, 7, 3, 19, 2, 29
Offset: 1

Views

Author

Seiichi Manyama, Oct 20 2021

Keywords

Comments

List of prime divisors of n and their exponents, ignoring the exponent 1. - Michael De Vlieger, Oct 20 2021

Examples

			   n   prime factorization  triangle
   1 = 1.                 ->  1;
   2 = 2.                 ->  2;
   3 = 3.                 ->  3;
   4 = 2^2.               ->  2, 2;
   5 = 5.                 ->  5;
   6 = 2*3.               ->  2, 3;
   7 = 7.                 ->  7;
   8 = 2^3.               ->  2, 3;
   9 = 3^2.               ->  3, 2;
  10 = 2*5.               ->  2, 5;
  11 = 11.                -> 11;
  12 = 2^2*3.             ->  2, 2, 3;
  13 = 13.                -> 13;
  14 = 2*7                ->  2, 7;
  15 = 3*5.               ->  3, 5;
  16 = 2^4.               ->  2, 4;
		

Crossrefs

Column 1 is A020639.
Row lengths are A238949(n) for n > 1.

Programs

  • Mathematica
    Array[DeleteCases[Flatten@ FactorInteger[#], 1] &, 58] /. {} -> {1} // Flatten (* Michael De Vlieger, Oct 20 2021 *)
  • PARI
    tabf(nn) = if(nn==1, print1(1, ", "), my(f=factor(nn)); for(i=1, #f~, for(j=1, 2, if((k=f[i, j])>j-1, print1(k, ", ")))));
    
  • Ruby
    require 'prime'
    def A348477(n)
      ary = (2..n).map{|i| i.prime_division}.flatten
      ary.delete(1)
      [1] + ary
    end
    p A348477(60)
Showing 1-6 of 6 results.