A316269
Array T(n,k) = n*T(n,k-1) - T(n,k-2) read by upward antidiagonals, with T(n,0) = 0, T(n,1) = 1, n >= 2.
Original entry on oeis.org
0, 0, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 4, 8, 4, 0, 1, 5, 15, 21, 5, 0, 1, 6, 24, 56, 55, 6, 0, 1, 7, 35, 115, 209, 144, 7, 0, 1, 8, 48, 204, 551, 780, 377, 8, 0, 1, 9, 63, 329, 1189, 2640, 2911, 987, 9, 0, 1, 10, 80, 496, 2255, 6930, 12649, 10864, 2584, 10
Offset: 2
The array starts in row n = 2 with columns k >= 0 as follows:
0 1 2 3 4 5 6
0 1 3 8 21 55 144
0 1 4 15 56 209 780
0 1 5 24 115 551 2640
0 1 6 35 204 1189 6930
0 1 7 48 329 2255 15456
0 1 8 63 496 3905 30744
0 1 9 80 711 6319 56160
0 1 10 99 980 9701 96030
0 1 11 120 1309 14279 155760
-
Table[If[# == 2, k, Simplify[(((# + Sqrt[#^2 - 4])/2)^k - ((# - Sqrt[#^2 - 4])/2)^k)/Sqrt[#^2 - 4]]] &[n - k + 2], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Michael De Vlieger, Jul 19 2018 *)
-
T(n, k) = if (k==0, 0, if (k==1, 1, n*T(n,k-1) - T(n,k-2)));
tabl(nn) = for(n=2, nn, for (k=0, nn, print1(T(n,k), ", ")); print); \\ Michel Marcus, Jul 03 2018
-
T(n, k) = ([n, -1; 1, 0]^k)[2, 1] \\ Jianing Song, Nov 10 2018
A372817
Table read by antidiagonals: T(m,n) = number of 1-metered (m,n)-parking functions.
Original entry on oeis.org
1, 0, 2, 0, 3, 3, 0, 4, 8, 4, 0, 6, 21, 15, 5, 0, 8, 55, 56, 24, 6, 0, 12, 145, 209, 115, 35, 7, 0, 16, 380, 780, 551, 204, 48, 8, 0, 24, 1000, 2912, 2640, 1189, 329, 63, 9, 0, 32, 2625, 10868, 12649, 6930, 2255, 496, 80, 10, 0, 48, 6900, 40569, 60606, 40391, 15456, 3905, 711, 99, 11
Offset: 1
For T(3,2) the 1-metered (3,2)-parking functions are 111, 121, 211, 212.
Table begins:
1, 2, 3, 4, 5, 6, 7, ...
0, 3, 8, 15, 24, 35, 48, ...
0, 4, 21, 56, 115, 204, 329, ...
0, 6, 55, 209, 551, 1189, 2255, ...
0, 8, 145, 780, 2640, 6930, 15456, ...
0, 12, 380, 2912, 12649, 40391, 105937, ...
0, 16, 1000, 10868, 60606, 235416, 726103, ...
...
- Spencer Daugherty, Pamela E. Harris, Ian Klein, and Matt McClinton, Metered Parking Functions, arXiv:2406.12941 [math.CO], 2024.
A240436
Semiprimes of the form n^3 - 2*n.
Original entry on oeis.org
4, 21, 115, 329, 2171, 6821, 24331, 50579, 79421, 103729, 226859, 357769, 704791, 1092521, 1224829, 2048129, 2247829, 2685341, 5177371, 6967489, 9393509, 11089121, 12648871, 13651441, 16974079, 25153171, 30663671, 38272079, 46267561, 74617619, 86937421, 90517951
Offset: 1
a(2) = 21: 3^3 - 2*3 = 27 - 6 = 21 = 3 * 7, which is semiprime.
a(3) = 115: 5^3 - 2*5 = 125 - 10 = 115 = 5 * 23, which is semiprime.
-
select(k -> numtheory:-bigomega(k)=2, [seq((n^3-2*n), n=1..500)]);
-
Select[Table[n^3 - 2*n, {n, 1000}], PrimeOmega[#] == 2 &]
-
forprime(p=1,10^3,q=p^2-2;if(isprime(q),print1(p*q,", "))) \\ Derek Orr, Aug 17 2014
Original entry on oeis.org
0, -1, 28, 237, 1016, 3115, 7764, 16793, 32752, 59031, 99980, 161029, 248808, 371267, 537796, 759345, 1048544, 1419823, 1889532, 2476061, 3199960, 4084059, 5153588, 6436297, 7962576, 9765575, 11881324, 14348853, 17210312, 20511091, 24299940, 28629089, 33554368, 39135327, 45435356
Offset: 0
a(2) = 28. 28 is the largest number k such that k^5 + 2 is divisible by k + 2. The resulting integer is 573679 = 2^20 - 9*2^16 + 31*2^12 - 49*2^8 + 31*2^4 - 1.
-
[n^5-2*n: n in [0..35]]; // Vincenzo Librandi, Oct 17 2014
-
A242436:=n->n^5-2*n: seq(A242436(n), n=0..30); # Wesley Ivan Hurt, Aug 17 2014
-
Table[n^5 - 2 n, {n, 0, 30}] (* Wesley Ivan Hurt, Aug 17 2014 *)
CoefficientList[Series[(-x + 34 x^2 + 54 x^3 + 34 x^4 - x^5)/(-1 + x)^6, {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 17 2014 *)
LinearRecurrence[{6,-15,20,-15,6,-1},{0,-1,28,237,1016,3115},40] (* Harvey P. Dale, Apr 07 2017 *)
-
vector(100, n, (n-1)^5 - 2*(n-1))
A246767
a(n) = n^4 - 2n.
Original entry on oeis.org
0, -1, 12, 75, 248, 615, 1284, 2387, 4080, 6543, 9980, 14619, 20712, 28535, 38388, 50595, 65504, 83487, 104940, 130283, 159960, 194439, 234212, 279795, 331728, 390575, 456924, 531387, 614600, 707223, 809940, 923459, 1048512, 1185855, 1336268, 1500555, 1679544, 1874087, 2085060
Offset: 1
-
Table[n^4-2n,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,-1,12,75,248},40] (* Harvey P. Dale, May 05 2019 *)
-
vector(100,n,(n-1)^4-2*(n-1))
-
concat(0, Vec(-x^2*(3*x^3+5*x^2+17*x-1)/(x-1)^5 + O(x^100))) \\ Colin Barker, Sep 04 2014
A361134
a(1) = 1, a(2) = 2; for n >= 3, a(n) = (n-1)^3 - a(n-1) - a(n-2).
Original entry on oeis.org
1, 2, 5, 20, 39, 66, 111, 166, 235, 328, 437, 566, 725, 906, 1113, 1356, 1627, 1930, 2275, 2654, 3071, 3536, 4041, 4590, 5193, 5842, 6541, 7300, 8111, 8978, 9911, 10902, 11955, 13080, 14269, 15526, 16861, 18266, 19745, 21308, 22947, 24666, 26475, 28366, 30343
Offset: 1
a(5) = (5-1)^3 - a(4) - a(3) = 4^3 - 20 - 5 = 64 - 20 - 5 = 39.
-
a[1] = 1; a[2] = 2; a[n_] := a[n] = (n - 1)^3 - a[n - 1] - a[n - 2]; Array[a, 45] (* Amiram Eldar, Mar 03 2023 *)
-
lista(nn) = my(va = vector(nn)); va[1] = 1; va[2] = 2; for (n=3, nn, va[n] = (n-1)^3 - va[n-1] - va[n-2];); va; \\ Michel Marcus, Mar 03 2023
Showing 1-6 of 6 results.
Comments