cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242817 a(n) = B(n,n), where B(n,x) = Sum_{k=0..n} Stirling2(n,k)*x^k are the Bell polynomials (also known as exponential polynomials or Touchard polynomials).

Original entry on oeis.org

1, 1, 6, 57, 756, 12880, 268098, 6593839, 187104200, 6016681467, 216229931110, 8588688990640, 373625770888956, 17666550789597073, 902162954264563306, 49482106424507339565, 2901159958960121863952, 181069240855214001514460, 11985869691525854175222222
Offset: 0

Views

Author

Emanuele Munarini, May 23 2014

Keywords

Crossrefs

Main diagonal of A189233 and of A292860.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, (1+
          add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k)
        end:
    a:= n-> A(n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, May 17 2016
  • Mathematica
    Table[BellB[n, n], {n, 0, 100}]
  • Maxima
    a(n):=stirling2(n,0)+sum(stirling2(n,k)*n^k,k,1,n);
    makelist(a(n),n,0,30);
    
  • PARI
    a(n) = sum(k=0, n, stirling(n,k,2)*n^k); \\ Michel Marcus, Apr 20 2016

Formula

E.g.f.: x*f'(x)/f(x), where f(x) is the generating series for sequence A035051.
a(n) ~ (exp(1/LambertW(1)-2)/LambertW(1))^n * n^n / sqrt(1+LambertW(1)). - Vaclav Kotesovec, May 23 2014
Conjecture: It appears that the equation a(x)*e^x = Sum_{n=0..oo} ( (n^x*x^n)/n! ) is true for every positive integer x. - Nicolas Nagel, Apr 20 2016 [This is just the special case k=x of the formula B(k,x) = e^(-x) * Sum_{n=0..oo} n^k*x^n/n!; see for example the World of Mathematics link. - Pontus von Brömssen, Dec 05 2020]
a(n) = n! * [x^n] exp(n*(exp(x)-1)). - Alois P. Heinz, May 17 2016
a(n) = [x^n] Sum_{k=0..n} n^k*x^k/Product_{j=1..k} (1 - j*x). - Ilya Gutkovskiy, May 31 2018

Extensions

Name corrected by Pontus von Brömssen, Dec 05 2020