A242817 a(n) = B(n,n), where B(n,x) = Sum_{k=0..n} Stirling2(n,k)*x^k are the Bell polynomials (also known as exponential polynomials or Touchard polynomials).
1, 1, 6, 57, 756, 12880, 268098, 6593839, 187104200, 6016681467, 216229931110, 8588688990640, 373625770888956, 17666550789597073, 902162954264563306, 49482106424507339565, 2901159958960121863952, 181069240855214001514460, 11985869691525854175222222
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..370
- Eric Weisstein's World of Mathematics, Bell Polynomial.
- Wikipedia, Touchard polynomials
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, (1+ add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k) end: a:= n-> A(n$2): seq(a(n), n=0..20); # Alois P. Heinz, May 17 2016
-
Mathematica
Table[BellB[n, n], {n, 0, 100}]
-
Maxima
a(n):=stirling2(n,0)+sum(stirling2(n,k)*n^k,k,1,n); makelist(a(n),n,0,30);
-
PARI
a(n) = sum(k=0, n, stirling(n,k,2)*n^k); \\ Michel Marcus, Apr 20 2016
Formula
E.g.f.: x*f'(x)/f(x), where f(x) is the generating series for sequence A035051.
a(n) ~ (exp(1/LambertW(1)-2)/LambertW(1))^n * n^n / sqrt(1+LambertW(1)). - Vaclav Kotesovec, May 23 2014
Conjecture: It appears that the equation a(x)*e^x = Sum_{n=0..oo} ( (n^x*x^n)/n! ) is true for every positive integer x. - Nicolas Nagel, Apr 20 2016 [This is just the special case k=x of the formula B(k,x) = e^(-x) * Sum_{n=0..oo} n^k*x^n/n!; see for example the World of Mathematics link. - Pontus von Brömssen, Dec 05 2020]
a(n) = n! * [x^n] exp(n*(exp(x)-1)). - Alois P. Heinz, May 17 2016
a(n) = [x^n] Sum_{k=0..n} n^k*x^k/Product_{j=1..k} (1 - j*x). - Ilya Gutkovskiy, May 31 2018
Extensions
Name corrected by Pontus von Brömssen, Dec 05 2020