A242830 For p = prime(n), a(n) = number of bases 1 < b < p such that b^(p-1) == 1 (mod p^2).
0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 2, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 2, 2, 1, 0, 0, 1, 0, 2, 0, 0, 0, 1, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 0, 1, 1, 3, 0, 0, 1, 1, 1, 1, 0, 2, 0, 3, 0, 2, 2, 2, 2, 2, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 2, 0, 0, 4, 0, 1
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A242830:= proc(n) local p; p:= ithprime(n); numboccur(1,[seq(b &^ (p-1) mod p^2, b=2..p-1)]); end proc; seq(A242830(n),n=1..1000); # Robert Israel, Jul 16 2014
-
Mathematica
a[n_] := With[{p = Prime[n]}, Length@Select[Range[2, p-1], PowerMod[#, p-1, p^2] == 1&]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 27 2023 *)
-
PARI
i=0; forprime(p=2, 10^3, a=2; while(a
Comments