cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A244526 Expansion of f(-x^3, -x^5)^2 in powers of x where f() is Ramanujan's two-variable theta function.

Original entry on oeis.org

1, 0, 0, -2, 0, -2, 1, 0, 2, 0, 1, 0, 0, 0, 2, 0, 0, -2, 2, -2, 0, -2, 0, -2, 0, 0, 0, 0, 1, 0, 0, 0, 2, -2, 0, 0, 3, 0, 2, -2, 0, 0, 2, 0, 2, 0, 0, -2, 0, 0, 0, -2, 0, -2, 0, 0, 0, -2, 0, 0, 2, 0, 0, -2, 0, -2, 1, 0, 2, 0, 0, -2, 2, -2, 2, 0, 0, 0, 3, 0, 0
Offset: 0

Views

Author

Michael Somos, Jun 29 2014

Keywords

Examples

			G.f. = 1 - 2*x^3 - 2*x^5 + x^6 + 2*x^8 + x^10 + 2*x^14 - 2*x^17 + 2*x^18 + ...
G.f. = q - 2*q^25 - 2*q^41 + q^49 + 2*q^65 + q^81 + 2*q^113 - 2*q^137 + ...
		

Crossrefs

Cf. A244465.

Programs

  • Mathematica
     QP := QPochhammer; A244526[n_]:= SeriesCoefficient[(QP[q^3, q^8]*QP[q^5, q^8]*QP[q^8])^2, {q, 0, n}]; Table[A244526[n], {n, 0, 50}] (* G. C. Greubel, Dec 25 2017 *)
  • PARI
    {a(n) = (-1)^n * sum(k=0, n, issquare(16*k + 1) * issquare(16*(n-k) + 1))};

Formula

Euler transform of period 8 sequence [ 0, 0, -2, 0, -2, 0, 0, -2, ...].
G.f.: f(-x^3, -x^5)^2 = (Sum_{k in Z} (-1)^k * x^(4*k^2 - k))^2.
Convolution square of A244465.
a(9*n + 4) = a(9*n + 7) = 0. a(49*n + 6) = a(n).

A143433 Expansion of f(-x, x^3) in powers of x where f(,) is Ramanujan's general theta function.

Original entry on oeis.org

1, -1, 0, 1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Aug 14 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x + x^3 - x^6 - x^10 + x^15 - x^21 + x^28 + x^36 - x^45 + x^55 + ...
G.f. = q - q^9 + q^25 - q^49 - q^81 + q^121 - q^169 + q^225 + q^289 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, -x^4] QPochhammer[ -x^3, -x^4] QPochhammer[ -x^4], {x, 0, n}]; (* Michael Somos, Jun 03 2015 *)
  • PARI
    {a(n) = if( n<0, 0, if( issquare(8*n + 1, &n), n = n\2; (-1)^(n + n\4), 0))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k)^( [1, 1, 0, -1, -1, -1, 1, 1, 2, 1, 1, -1, -1, -1, 0, 1, 1] [k%16 + 1]), 1 + x * O(x^n)), n))};

Formula

Euler transform of period 16 sequence [ -1, 0, 1, 1, 1, -1, -1, -2, -1, -1, 1, 1, 1, 0, -1, -1, ...].
Pattern of signs of nonzero terms is A143431.
G.f.: Sum_{k>=0} (-1)^(k + floor(k/4)) * x^(k * (k+1) / 2).
a(n) = (-1)^n * A143434(n).
a(2*n) = A244465(n). a(2*n + 1) = - A244525(n). a(3*n + 2) = a(5*n + 2) = a(5*n + 4) = 0.

A308399 Expansion of 1 / Sum_{k=-oo..oo} (-x)^(k*(4*k + 1)).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 1, 3, 1, 3, 3, 2, 6, 3, 4, 8, 4, 9, 9, 6, 15, 10, 12, 20, 12, 22, 23, 18, 35, 26, 30, 46, 32, 51, 54, 45, 76, 62, 71, 99, 76, 111, 117, 104, 160, 136, 154, 205, 167, 230, 244, 223, 319, 286, 319, 406, 349, 456, 484, 458, 619, 570, 632, 779, 695
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2019

Keywords

Comments

Number of partitions of n into parts congruent to {0, 3, 5} mod 8.
Convolution inverse of A244465.

Examples

			For n=23 the a(23)=6 solutions are 3+3+3+3+3+3+5, 3+3+3+3+3+8, 3+3+3+3+11, 3+5+5+5+5, 5+5+5+8, and 5+5+13.
		

Crossrefs

Programs

  • Mathematica
    nmax = 68; CoefficientList[Series[1/Sum[(-x)^(k (4 k + 1)), {k, -nmax, nmax}], {x, 0, nmax}], x]
    nmax = 68; CoefficientList[Series[Product[1/((1 - x^(8 k - 5)) (1 - x^(8 k - 3)) (1 - x^(8 k))), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 68; CoefficientList[Series[Sum[PartitionsP[k] (-x)^k, {k, 0, nmax}]/Sum[PartitionsQ[2 k] (-x)^k, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: 1 / Sum_{k>=0} (-x)^A074378(k).
G.f.: Product_{k>=1} 1 / ((1 - x^(8*k - 5)) * (1 - x^(8*k - 3)) * (1 - x^(8*k))).
G.f.: ( Sum_{k>=0} A000041(k)*(-x)^k ) / ( Sum_{k>=0} A000009(2*k)*(-x)^k ).
a(n) ~ sqrt(sqrt(2) - 1) * exp(sqrt(n)*Pi/2) / (2^(9/4)*n). - Vaclav Kotesovec, May 25 2019
a(n) = a(n-3) + a(n-5) - a(n-14) - a(n-18) + + - - (with a(0)=1 and a(n) = 0 for negative n), where 3, 5, 14, 18, ... is the sequence A074378. - Ludovic Schwob, Aug 04 2021
Showing 1-3 of 3 results.