cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A047916 Triangular array read by rows: a(n,k) = phi(n/k)*(n/k)^k*k! if k|n else 0 (1<=k<=n).

Original entry on oeis.org

1, 2, 2, 6, 0, 6, 8, 8, 0, 24, 20, 0, 0, 0, 120, 12, 36, 48, 0, 0, 720, 42, 0, 0, 0, 0, 0, 5040, 32, 64, 0, 384, 0, 0, 0, 40320, 54, 0, 324, 0, 0, 0, 0, 0, 362880, 40, 200, 0, 0, 3840, 0, 0, 0, 0, 3628800, 110, 0, 0, 0, 0, 0, 0, 0, 0, 0, 39916800, 48, 144
Offset: 1

Views

Author

Keywords

Comments

T(n,k) = A054523(n,k) * A010766(n,k)^A002260(n,k) * A166350(n,k). - Reinhard Zumkeller, Jan 20 2014

Examples

			1; 2,2; 6,0,6; 8,8,0,24; 20,0,0,0,120; 12,36,48,0,0,720; ...
		

References

  • J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.

Crossrefs

A064649 gives the row sums.
Cf. A002618 (left edge), A000142 (right edge), A049820 (zeros per row), A000005 (nonzeros per row).
See also A247917, A047918, A047919.

Programs

  • Haskell
    import Data.List (zipWith4)
    a047916 n k = a047916_tabl !! (n-1) !! (k-1)
    a047916_row n = a047916_tabl !! (n-1)
    a047916_tabl = zipWith4 (zipWith4 (\x u v w -> x * v ^ u * w))
                   a054523_tabl a002260_tabl a010766_tabl a166350_tabl
    -- Reinhard Zumkeller, Jan 20 2014
    
  • Mathematica
    a[n_, k_] := If[Divisible[n, k], EulerPhi[n/k]*(n/k)^k*k!, 0]; Flatten[ Table[ a[n, k], {n, 1, 12}, {k, 1, n}]] (* Jean-François Alcover, May 04 2012 *)
  • PARI
    a(n,k)=if(n%k, 0, eulerphi(n/k)*(n/k)^k*k!) \\ Charles R Greathouse IV, Feb 09 2017

A104769 Expansion of g.f. -x/(1+x-x^3).

Original entry on oeis.org

0, -1, 1, -1, 0, 1, -2, 2, -1, -1, 3, -4, 3, 0, -4, 7, -7, 3, 4, -11, 14, -10, -1, 15, -25, 24, -9, -16, 40, -49, 33, 7, -56, 89, -82, 26, 63, -145, 171, -108, -37, 208, -316, 279, -71, -245, 524, -595, 350, 174, -769, 1119, -945, 176, 943, -1888, 2064, -1121, -767, 2831, -3952
Offset: 0

Views

Author

Creighton Dement, Mar 24 2005

Keywords

Comments

Generating floretion is "jesright".
Pisano period lengths: 1, 7, 13, 14, 24, 91, 48, 28, 39, 168, 120, 182, 183, 336, 312, 56, 288, 273, 180, 168,.. (which differs from A104217 for example at index 23). - R. J. Mathar, Aug 10 2012

Crossrefs

Apart from signs, essentially the same as A050935 and A078013.
Cf. A247917 (negative).

Programs

  • Mathematica
    LinearRecurrence[{-1, 0, 1}, {0, -1, 1}, 61] (* or *)
    CoefficientList[Series[-x/(1 + x - x^3), {x, 0, 60}], x] (* Michael De Vlieger, Jul 02 2021 *)
  • PARI
    a(n)=([0,1,0;0,0,1;1,0,-1]^n*[0;-1;1])[1,1] \\ Charles R Greathouse IV, Jun 11 2015

Formula

a(n) = -A247917(n-1).
Recurrence: a(n+3) = a(n) - a(n+2); a(0) = 0, a(1) = -1, a(2) = 1.
a(n+1) - a(n) = ((-1)^(n+1))*a(n+5).
a(n) = ((-1)^n)*A050935(n+1) = ((-1)^n)*A078013(n+2).
a(n) = A104771(n) - A104770(n).

Extensions

Edited by Ralf Stephan, Apr 05 2009

A247919 Expansion of 1 / (1 + x^4 - x^5) in powers of x.

Original entry on oeis.org

1, 0, 0, 0, -1, 1, 0, 0, 1, -2, 1, 0, -1, 3, -3, 1, 1, -4, 6, -4, 0, 5, -10, 10, -4, -5, 15, -20, 14, 1, -20, 35, -34, 13, 21, -55, 69, -47, -8, 76, -124, 116, -39, -84, 200, -240, 155, 45, -284, 440, -395, 110, 329, -724, 835, -505, -219, 1053, -1559, 1340
Offset: 0

Views

Author

Michael Somos, Sep 26 2014

Keywords

Examples

			G.f. = 1 - x^4 + x^5 + x^8 - 2*x^9 + x^10 - x^12 + 3*x^13 - 3*x^14 + x^15 + ...
		

Crossrefs

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1 + x^4 - x^5)));  // G. C. Greubel, Aug 04 2018
  • Mathematica
    CoefficientList[Series[1/(1 + x^4 - x^5), {x, 0, 100}], x] (* Vincenzo Librandi, Sep 27 2014 *)
    LinearRecurrence[{0,0,0,-1,1},{1,0,0,0,-1},60] (* Harvey P. Dale, Sep 11 2024 *)
  • PARI
    {a(n) = if( n<0, n=-5-n; polcoeff( 1 / (1 - x - x^5) + x * O(x^n), n), polcoeff( 1 / (1 + x^4 - x^5) + x * O(x^n), n))};
    

Formula

G.f.: 1 / ((1 - x + x^2) * (1 + x - x^3)).
Convolution of A010892 and A247917.
a(-5-n) = A003520(n) for all n in Z.
0 = a(n) - a(n+1) - a(n+5) for all n in Z.

A257543 Expansion of 1 / (1 - x^5 - x^8 + x^9) in powers of x.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 1, -1, 1, 0, 0, 2, -2, 1, 1, -2, 4, -3, 1, 3, -6, 7, -3, -2, 9, -13, 11, -1, -11, 22, -23, 12, 10, -33, 46, -35, 2, 43, -78, 81, -37, -41, 122, -159, 118, 4, -162, 281, -277, 114, 167, -443, 558, -391, -52, 610, -1001, 949, -338, -662
Offset: 0

Views

Author

Michael Somos, Apr 28 2015

Keywords

Examples

			G.f. = 1 + x^5 + x^8 - x^9 + x^10 + 2*x^13 - 2*x^14 + x^15 + x^16 + ...
		

Crossrefs

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1 / ((1-x^4)*(1+x^4-x^5)))); // G. C. Greubel, Aug 02 2018
  • Mathematica
    a[ n_] := SeriesCoefficient[ If[ n >= 0, 1 / (1 - x^5 - x^8 + x^9), -x^9 /(1 - x - x^4 + x^9)], {x, 0, Abs@n}];
  • PARI
    {a(n) = if( n>=0, polcoeff( 1 / (1 - x^5 - x^8 + x^9) + x * O(x^n), n), polcoeff( -x^9 / (1 - x - x^4 + x^9) + x * O(x^-n), -n))};
    

Formula

G.f.: 1 / ((1 - x^4) * (1 + x^4 - x^5)) = (1 + x) / ((1 + x^3) * (1 - x^4) * (1 + x - x^3)).
a(n) = a(n-5) + a(n-8) - a(n-9) for all n in Z.
a(n) - a(n+2) - a(n+3) has period 12.
a(n) - a(n+12) = A104769(n+5) = -A247917(n+4) for all n in Z.
a(n) + a(n+1) = A247918(n) for all n in Z.
a(n) = -A233522(-9 - n) for all n in Z.

A358613 a(n) = Sum_{k=0..floor(n/3)} (-1)^k * (n-k)!/(k! * (n-3*k)!).

Original entry on oeis.org

1, 1, 1, -1, -5, -11, -7, 31, 139, 245, -71, -1937, -5989, -6251, 25945, 144479, 304843, -177899, -3517351, -11743505, -10097381, 81902453, 433558201, 840235039, -1481279605, -15839941451, -48073840007, -8454966289, 564429256219, 2518098130645, 3490609807769
Offset: 0

Views

Author

Seiichi Manyama, Nov 23 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (-1)^k*(n-k)!/(k!*(n-3*k)!));

Formula

a(n) = (4 * a(n-1) - a(n-2) - 2 * (2*n-3) * a(n-3))/3 for n > 2.
Showing 1-5 of 5 results.