cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A256438 Numbers m such that sigma(sigma(m-1)) = 2*(m-1).

Original entry on oeis.org

3, 5, 17, 65, 4097, 65537, 262145, 1073741825, 1152921504606846977, 309485009821345068724781057, 81129638414606681695789005144065, 85070591730234615865843651857942052865
Offset: 1

Views

Author

Jaroslav Krizek, Mar 29 2015

Keywords

Comments

Numbers k such that A051027(k-1) = 2*(k-1).
Conjecture: numbers of the form 2^k+1 such that sigma(2^k) = prime p.
Prime terms: 3, 5, 17, 65537, ...
Supersequence of A249759.

Examples

			17 is in the sequence because sigma(sigma(17-1)) = 32 = 2*(17-1).
		

Crossrefs

Programs

  • Magma
    [n: n in[2..10000000] | SumOfDivisors(SumOfDivisors(n-1)) eq 2*(n-1)];
    
  • Maple
    with(numtheory): A256438:=n->`if`(sigma(sigma(n-1)) = 2*(n-1), n, NULL): seq(A256438(n), n=2..10^5); # Wesley Ivan Hurt, Mar 30 2015
  • Mathematica
    Select[Range@ 1000000, DivisorSigma[1, DivisorSigma[1, # - 1]] == 2 (# - 1) &] (* Michael De Vlieger, Mar 29 2015 *)
  • PARI
    isok(m) = sigma(sigma(m-1)) == 2*(m-1); \\ Michel Marcus, Feb 09 2020

Formula

a(n) = A019279(n) + 1. - Michel Marcus, Feb 09 2020

A270413 Numbers m such that sigma(m-1) is a prime.

Original entry on oeis.org

3, 5, 10, 17, 26, 65, 290, 730, 1682, 2402, 3482, 4097, 5042, 7922, 10202, 15626, 17162, 27890, 28562, 29930, 65537, 83522, 85850, 146690, 262145, 279842, 458330, 491402, 531442, 552050, 579122, 597530, 683930, 703922, 707282, 734450, 829922, 1190282, 1203410
Offset: 1

Views

Author

Jaroslav Krizek, Mar 16 2016

Keywords

Comments

Prime terms are in A249759.
Corresponding values of sigma(n-1): 3, 7, 13, 31, 31, 127, 307, 1093, ...
Conjecture: supersequence of A256438.
Conjecture: 31 is the only prime p such that p = sigma(x-1) = sigma(y-1) for distinct numbers x and y; 31 = sigma(17-1) = sigma(26-1).
Supersequence of A270414 and A270415.

Examples

			17 is in the sequence because sigma(17-1) = sigma(16) = 31 (prime).
		

Crossrefs

Programs

  • Magma
    [n: n in [2..2000000] |  IsPrime(SumOfDivisors(n-1))];
    
  • Mathematica
    Select[Range[10^6], PrimeQ@ DivisorSigma[1, # - 1] &] (* Michael De Vlieger, Mar 17 2016 *)
  • PARI
    isok(n) = isprime(sigma(n-1)); \\ Michel Marcus, Mar 17 2016

Formula

a(n) = A023194(n) + 1.

A258429 Primes p such that p - 1 = (tau(p - 1) - 1)^k for some k >= 0, where tau(n) is the number of divisors of n (A000005).

Original entry on oeis.org

2, 5, 17, 65537
Offset: 1

Views

Author

Jaroslav Krizek, May 29 2015

Keywords

Comments

Conjecture: the sequence is finite.
Corresponding values of numbers k: 0, 2, 2, 4, ...
A Fermat prime from A019434 of the form F(n) = 2^(2^n) + 1 is a term if k = 2^n * log(2) / log(2^n) is an integer.

Examples

			65537 (prime) is in the sequence because 65537 - 1 = (tau(65536) - 1)^4 = 16^4.
		

Crossrefs

Programs

  • Magma
    [2] cat [n+1: n in [A219338(n)] | IsPrime(n+1)];
    
  • Magma
    Set(Sort([n: n in[1..1000000], k in [0..100] | IsPrime(n) and (n-1) eq (NumberOfDivisors(n-1) - 1)^k]));
    
  • PARI
    listp(nn) = {print1(p=2, ", "); forprime(p=5, nn, expo = valuation(x=(p-1), y=(numdiv(p-1)-1)); if (x == y^expo, print1(p, ", ")););} \\ Michel Marcus, Jun 04 2015

A278741 Odd numbers k such that tau(k-1) is a prime.

Original entry on oeis.org

3, 5, 17, 65, 1025, 4097, 65537, 262145, 4194305, 268435457, 1073741825, 68719476737, 1099511627777, 4398046511105, 70368744177665, 4503599627370497, 288230376151711745, 1152921504606846977, 73786976294838206465, 1180591620717411303425, 4722366482869645213697
Offset: 1

Views

Author

Jaroslav Krizek, Nov 27 2016

Keywords

Comments

tau(k) = A000005(k) = the number of divisors of k.
Conjecture: prime terms are in A249759: 3, 5, 17, 65537, ...
Supersequence of A256438 and A249759. Subsequence of {A009087(n) + 1}.

Examples

			Odd number 65 is in the sequence because tau(64) = 7 (prime).
		

Crossrefs

Programs

  • Magma
    [n: n in[2..10000000] |  IsOdd(n) and IsPrime(NumberOfDivisors(n-1))];
    
  • PARI
    isok(n) = (n % 2) && isprime(numdiv(n-1)); \\ Michel Marcus, Nov 27 2016

Formula

a(n) = A061286(n) + 1.
sigma(a(n)-1) = A001348(n), i.e., Mersenne numbers.
tau(a(n)-1) = A000040(n), i.e., all primes; a(n) = the smallest odd number k such that tau(a(n)-1) = prime(n) = A000040(n).

A249760 Numbers k such that k+1 and sigma(k) are both primes.

Original entry on oeis.org

2, 4, 16, 65536
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2014

Keywords

Comments

4 is the only number k such that k-1 and sigma(k) are both primes.
Corresponding values of k+1 and sigma(k) are in A249759 and A249761.
Conjectures: (1) sequence is finite; (2) a(n) + 1 is a Fermat prime (A019434); (3) sigma(a(n)) is a Mersenne prime (A000668).
Subsequence of A023194, and by a comment in that entry it follows that each term is a prime power. From that conjectures (2) and (3) above easily follow. - Jeppe Stig Nielsen, Jan 13 2015

Examples

			16 is a term because 16+1=17 and sigma(16)=31 are both primes.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10^8] | IsPrime(n+1) and IsPrime(SumOfDivisors(n))];
  • Mathematica
    Select[Range[10^5], PrimeQ[# + 1]&& PrimeQ[DivisorSigma[1, #]] &] (* Vincenzo Librandi, Nov 14 2014 *)

Formula

a(n) = A249759(n) - 1.

A249761 Primes p such that there is prime q with sigma(q-1) = p.

Original entry on oeis.org

3, 7, 31, 131071
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2014

Keywords

Comments

a(n) = corresponding values of sigma(n) of numbers n from A249760(n); a(n) = A000203(A249760(n)).
Corresponding values of primes q are in A249759.
Conjectures: 1) sequence is finite; 2) (a(n)+3)/2 is a Fermat prime (A019434); 3) a(n) is subsequence of Mersenne primes (A000668); 4) a(n) = 2*A249759(n)-3.

Examples

			Prime 31 is in the sequence because there is prime 17 with sigma(17-1) = sigma(16) = 31.
		

Crossrefs

Programs

  • Magma
    [a: p in PrimesUpTo(5000000) | IsPrime(a) where a is  SumOfDivisors(p-1)]

A270414 Numbers m such that sigma(m-1) and sigma(phi(m)) are both primes.

Original entry on oeis.org

3, 5, 10, 17, 65537
Offset: 1

Views

Author

Jaroslav Krizek, Mar 16 2016

Keywords

Comments

Numbers n such that A000203(n-1) and A062402(n) are both primes.
There are no other terms <= 10^7.
Intersection of A270413 and A062514.
Prime terms are in A249759.
Corresponding values of sigma(n-1): 3, 7, 13, 31, 131071, ...
Corresponding values of sigma(phi(n)): 3, 7, 7, 31, 131071, ...
Conjecture: union of number 10 and A249759.

Examples

			10 is in the sequence because sigma(10-1) = sigma(9) = 13 and sigma(phi(10)) = sigma(4) = 7 (both primes).
		

Crossrefs

Programs

  • Magma
    [n: n in [2..100000] |  IsPrime(SumOfDivisors(n-1)) and IsPrime(SumOfDivisors(EulerPhi(n)))];
    
  • Mathematica
    Select[Range[10^6], And[PrimeQ@ DivisorSigma[1, # - 1], PrimeQ@ DivisorSigma[1, EulerPhi@ #]] &] (* Michael De Vlieger, Mar 17 2016 *)
  • PARI
    isok(n) = isprime(sigma(n-1)) && isprime(sigma(eulerphi(n))); \\ Michel Marcus, Mar 17 2016

A270415 Numbers n such that sigma(n-1) and sigma(n) - 1 are both primes.

Original entry on oeis.org

3, 5, 10, 17, 26, 65, 65537, 146690, 703922, 1481090, 1885130, 2036330, 2211170, 2430482, 2505890, 5470922, 9840770, 11607650, 17783090, 24137570, 74425130, 76615010, 77563250, 133379402, 138697730, 138980522, 142396490, 155575730, 177715562, 181899170
Offset: 1

Views

Author

Jaroslav Krizek, Mar 16 2016

Keywords

Comments

Numbers n such that A000203(n-1) and A039653(n) are both primes.
Intersection of A270413 and A248792.
Prime terms are in A249759.
Corresponding values of sigma(n-1): 3, 7, 13, 31, 31, 127, 131071, ...
Corresponding values of sigma(n) - 1: 3, 5, 17, 17, 41, 83, 65537, ...

Examples

			17 is in the sequence because sigma(17-1) = sigma(16) = 31 and sigma(10) - 1 = 18 - 1 = 17 (both primes).
		

Crossrefs

Programs

  • Magma
    [n: n in [2..10000000] | IsPrime(SumOfDivisors(n-1)) and  IsPrime(SumOfDivisors(n)-1)];
    
  • Mathematica
    Select[Range[10^7], And[PrimeQ@ DivisorSigma[1, # - 1], PrimeQ[DivisorSigma[1, #] - 1]] &] (* Michael De Vlieger, Mar 17 2016 *)
  • PARI
    isok(n) = isprime(sigma(n-1)) && isprime(sigma(n)-1); \\ Michel Marcus, Mar 17 2016

A270416 Numbers n such that sigma(n) - 1 and sigma(phi(n)) are both primes.

Original entry on oeis.org

3, 5, 6, 10, 17, 34, 40, 60, 85, 136, 204, 240, 4369, 8224, 8704, 8738, 10880, 12336, 13056, 65537, 131074, 131584, 139264, 163840, 164480, 174760, 208896, 245760, 262140, 524296, 526336, 559232, 835584, 838848, 2281736192, 2694881440, 2852170240, 2863267840, 3221274624, 3233857728, 4026593280
Offset: 1

Views

Author

Jaroslav Krizek, Mar 16 2016

Keywords

Comments

Numbers n such that A039653(n) and A062402(n) are both primes.
Intersection of A248792 and A062514.
Prime terms are in A249759.
Corresponding values of sigma(n) - 1: 3, 5, 11, 17, 17, 53, 89, 167, ...
Corresponding values of sigma(phi(n)): 3, 7, 3, 7, 31, 31, 31, 31, 127, ...

Examples

			10 is in the sequence because sigma(10) - 1 = 18 - 1 = 17 and sigma(phi(10)) = sigma(4) = 7 (both primes).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], And[PrimeQ[DivisorSigma[1, #] - 1], PrimeQ@ DivisorSigma[1, EulerPhi@ #]] &] (* Michael De Vlieger, Mar 17 2016 *)
  • PARI
    isok(n) = isprime(sigma(n)-1) && isprime(sigma(eulerphi(n))); \\ Michel Marcus, Mar 17 2016

Extensions

a(35)-a(41) from Giovanni Resta, Apr 10 2016

A300217 Numbers k such that tau(phi(k)) is a prime.

Original entry on oeis.org

3, 4, 5, 6, 8, 10, 12, 17, 32, 34, 40, 48, 60, 85, 128, 136, 160, 170, 192, 204, 240, 1285, 2048, 2056, 2176, 2560, 2570, 2720, 3072, 3084, 3264, 3840, 4080, 4369, 8192, 8224, 8704, 8738, 10240, 10280, 10880, 12288, 12336, 13056, 15360, 15420, 16320, 65537
Offset: 1

Views

Author

Jaroslav Krizek, Feb 28 2018

Keywords

Comments

Numbers k such that A062821(k) = A000005(A000010(k)) is a prime.
Supersequence of A062514.
From Robert Israel, Mar 18 2018: (Start)
Numbers k such that A000010(k) = 2^(p-1) where p is prime.
Numbers of the form 2^m*Product_{i=1..k} (2^(2^(e_i))+1) where 2^(2^(e_i)+1) are distinct Fermat primes (A019434) and m + 1 + Sum_i 2^(e_i) is prime. In particular the prime terms are A249759.
(End)
According to a comment in A009087, if the sum of divisors is prime, then the number of divisors is also prime. - Michael B. Porter, Mar 23 2018

Examples

			17 is a term because phi(17) = 16, tau(16) = 5 (prime).
		

Crossrefs

Programs

  • Magma
    [n: n in[1..10^6] | IsPrime(NumberOfDivisors(EulerPhi(n)))];
    
  • Maple
    select(isprime @ numtheory:-tau @ numtheory:-phi, [$1..10^5]); # Robert Israel, Mar 18 2018
  • Mathematica
    Select[Range[2^16 + 1], PrimeQ@ DivisorSigma[0, EulerPhi@ #] &] (* Michael De Vlieger, Mar 01 2018 *)
  • PARI
    isok(k) = isprime(numdiv(eulerphi(k))); \\ Altug Alkan, Mar 04 2018
Showing 1-10 of 12 results. Next