A249759
Primes p such that sigma(p-1) is a prime q.
Original entry on oeis.org
3, 5, 17, 65537
Offset: 1
Prime 17 is in the sequence because sigma(17-1) = sigma(16) = 31 (prime).
-
[p: p in PrimesUpTo(1000000) | IsPrime(SumOfDivisors(p-1))]
-
with(numtheory): A249759:=n->`if`(isprime(n) and isprime(sigma(n-1)), n, NULL): seq(A249759(n), n=1..6*10^5); # Wesley Ivan Hurt, Nov 14 2014
-
Select[Range[10^5], PrimeQ[#]&& PrimeQ[DivisorSigma[1, # - 1]] &] (* Vincenzo Librandi, Nov 14 2014 *)
Select[Prime[Range[7000]],PrimeQ[DivisorSigma[1,#-1]]&] (* Harvey P. Dale, Jun 14 2020 *)
-
lista(nn) = {forprime(p=1, nn, if (isprime(sigma(p-1)), print1(p, ", ")););} \\ Michel Marcus, Nov 14 2014
A270414
Numbers m such that sigma(m-1) and sigma(phi(m)) are both primes.
Original entry on oeis.org
3, 5, 10, 17, 65537
Offset: 1
10 is in the sequence because sigma(10-1) = sigma(9) = 13 and sigma(phi(10)) = sigma(4) = 7 (both primes).
-
[n: n in [2..100000] | IsPrime(SumOfDivisors(n-1)) and IsPrime(SumOfDivisors(EulerPhi(n)))];
-
Select[Range[10^6], And[PrimeQ@ DivisorSigma[1, # - 1], PrimeQ@ DivisorSigma[1, EulerPhi@ #]] &] (* Michael De Vlieger, Mar 17 2016 *)
-
isok(n) = isprime(sigma(n-1)) && isprime(sigma(eulerphi(n))); \\ Michel Marcus, Mar 17 2016
A270415
Numbers n such that sigma(n-1) and sigma(n) - 1 are both primes.
Original entry on oeis.org
3, 5, 10, 17, 26, 65, 65537, 146690, 703922, 1481090, 1885130, 2036330, 2211170, 2430482, 2505890, 5470922, 9840770, 11607650, 17783090, 24137570, 74425130, 76615010, 77563250, 133379402, 138697730, 138980522, 142396490, 155575730, 177715562, 181899170
Offset: 1
17 is in the sequence because sigma(17-1) = sigma(16) = 31 and sigma(10) - 1 = 18 - 1 = 17 (both primes).
-
[n: n in [2..10000000] | IsPrime(SumOfDivisors(n-1)) and IsPrime(SumOfDivisors(n)-1)];
-
Select[Range[10^7], And[PrimeQ@ DivisorSigma[1, # - 1], PrimeQ[DivisorSigma[1, #] - 1]] &] (* Michael De Vlieger, Mar 17 2016 *)
-
isok(n) = isprime(sigma(n-1)) && isprime(sigma(n)-1); \\ Michel Marcus, Mar 17 2016
A281622
Numbers k such that sigma(k-1) is a Mersenne prime (A000668).
Original entry on oeis.org
3, 5, 17, 26, 65, 4097, 65537, 262145, 1073741825
Offset: 1
65 is a term because sigma(64) = 127 (Mersenne prime).
Union of 26 and odd terms of
A270413.
-
[n: n in[2..1000000], k in [1..20] | SumOfDivisors(n-1) eq 2^k-1 and IsPrime(2^k-1)];
-
isok(n) = my(s = sigma(n-1)); isprime(s) && ispower(s+1,,&p) && (p==2); \\ Michel Marcus, Jan 27 2017
Showing 1-4 of 4 results.
Comments