A253317 Indices in A261283 where records occur.
0, 1, 2, 3, 8, 9, 10, 11, 128, 129, 130, 131, 136, 137, 138, 139, 32768, 32769, 32770, 32771, 32776, 32777, 32778, 32779, 32896, 32897, 32898, 32899, 32904, 32905, 32906, 32907, 2147483648, 2147483649, 2147483650, 2147483651, 2147483656, 2147483657
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..4096
- Lorenzo Sauras-Altuzarra, Some arithmetical problems that are obtained by analyzing proofs and infinite graphs, arXiv:2002.03075 [math.NT], 2020.
Crossrefs
Programs
-
Maple
a := proc(n) local k, A: A := [seq(0,i=1..n)]: A[1]:=0: for k from 1 to n-1 do A[k+1] := A[k-2^ilog2(k)+1]+2^(2^ilog2(k)-1): od: return A[n]: end proc: # Lorenzo Sauras Altuzarra, Dec 18 2019 # second Maple program: a:= n-> (l-> add(l[i+1]*2^(2^i-1), i=0..nops(l)-1))(Bits[Split](n-1)): seq(a(n), n=1..38); # Alois P. Heinz, Dec 13 2023
-
Mathematica
Nest[Append[#1, #1[[-#2]] + 2^(#2 - 1)] & @@ {#, 2^(IntegerLength[Length[#], 2] - 1)} &, {0, 1}, 36] (* Michael De Vlieger, May 08 2020 *)
-
PARI
a(n)={if(n<=1, 0, my(t=1<
Andrew Howroyd, Dec 20 2019
Formula
a(n) = A358126(n-1) / 2. - Tilman Piesk, Dec 18 2022
a(2^n+1) = 2^(2^n-1) = A058891(n+1). - Gus Wiseman, Dec 29 2023
a(2^n) = A072639(n). - Gus Wiseman, Dec 29 2023
G.f.: 1/(1-x) * Sum_{k>=0} (2^(-1+2^k))*x^2^k/(1+x^2^k). - John Tyler Rascoe, May 22 2024
Comments