A253412 Number of n-bit legal binary words with maximal set of 1s.
1, 1, 2, 2, 4, 4, 7, 9, 13, 18, 25, 36, 49, 70, 97, 137, 191, 268, 376, 526, 738, 1033, 1449, 2029, 2844, 3985, 5584, 7825, 10964, 15365, 21529, 30169, 42274, 59238, 83008, 116316, 162991, 228393, 320041, 448462, 628417, 880580, 1233929, 1729066, 2422885, 3395113, 4757463
Offset: 0
Examples
The only legal words with maximal set of 1s are: 0 if n = 1; 01 & 10 if n = 2; 010 & 101 if n = 3; 0110, 1001, 0101 & 1010 if n = 4; 01010, 01101, 10101 & 10110 if n = 5; and 010101, 010110, 011001, 011010, 100110, 101010 & 101101 if n = 6.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2500 (terms n = 1..100 from Andrew Woods)
- Tomislav Došlić, Mate Puljiz, Stjepan Šebek, and Josip Žubrinić, On a variant of Flory model, arXiv:2210.12411 [math.CO], 2022.
- M. L. Gargano, A. Weisenseel, J. Malerba and M. Lewinter, Discrete Renyi parking constants, 36th Southeastern Conf. on Combinatorics, Graph Theory, and Computing, Boca Raton, 2005, Congr. Numer. 176 (2005) 43-48.
- Eric Weisstein's World of Mathematics, Minimal Dominating Set
- Eric Weisstein's World of Mathematics, Path Graph
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,0,-1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{0, 1, 1, 1, 0, -1}, {1, 2, 2, 4, 4, 7}, 50] (* Harvey P. Dale, May 08 2017 *) CoefficientList[Series[(1 + 2 x + x^2 + x^3 - x^4 - x^5)/(1 - x^2 - x^3 - x^4 + x^6), {x, 0, 20}], x] (* Eric W. Weisstein, Jul 24 2017 *) Table[RootSum[1 - #^2 - #^3 - #^4 + #^6 &, 9 #^n - 18 #^(n + 2) + 23 #^(n + 3) - 3 #^(n + 4) + 32 #^(n + 5) &]/229, {n, 20}] (* Eric W. Weisstein, Aug 04 2017 *)
-
Python
def A253412(n): c, fs = 0, '0'+str(n)+'b' for i in range(2**n): s = '01'+format(i,fs)+'10' for j in range(n): if s[j:j+4] == '0100' or s[j+1:j+5] == '0010' or s[j+1:j+4] == '000' or s[j+1:j+4] == '111': break else: c += 1 return c # Chai Wah Wu, Jan 02 2015
Formula
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-6), for n >= 6, with a(0) = a(1) = 1, a(2) = a(3) = 2, a(4) = a(5) = 4, a(6) = 7. - Andrew Woods, Jan 02 2015
G.f.: (1 + x^2)*(1 + x -x^3) / (1 - x^2 - x^3 - x^4 + x^6). - Paul D. Hanna, Jan 02 2015
a(n) = sqrt(A303072(n)). - Eric W. Weisstein, Apr 18 2018
Extensions
Terms a(21) and beyond from Andrew Woods, Jan 02 2015
a(0)=1 prepended by Alois P. Heinz, Oct 26 2022
Comments