cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A255881 Expansion of exp( Sum_{n >= 1} A000364(n)*x^n/n ).

Original entry on oeis.org

1, 1, 3, 23, 371, 10515, 461869, 28969177, 2454072147, 269732425859, 37312477130105, 6342352991066661, 1299300852841580893, 315702973949640373933, 89765549161833322593411, 29526682496433138896248775, 11124674379405792463701519059
Offset: 0

Views

Author

Peter Bala, Mar 09 2015

Keywords

Comments

A000364(n) = (-1)^n*2^(2*n)*Euler(2*n,1/2), where E(n,x) is the n-th Euler polynomial. In general it appears that when k is a nonzero integer, the expansion of exp( Sum_{n >= 1} k^(2*n)*E(2*n,1/k)*(-x)^n/n ) has (positive) integer coefficients. See A255882 (k = 3), A255883(k = 4) and A255884 (k = 6).

Crossrefs

Programs

  • Maple
    #A255881
    k := 2:
    exp(add(k^(2*n)*euler(2*n, 1/k)*(-x)^n/n, n = 1 .. 16)): seq(coeftayl(%, x = 0, n), n = 0 .. 16);
  • Mathematica
    A000364:= Table[Abs[EulerE[2 n]], {n, 0, 80}]; a:= With[{nmax = 70}, CoefficientList[Series[Exp[Sum[A000364[[k + 1]]*x^(k)/(k), {k, 1, 75}]], {x, 0, nmax}], x]]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Aug 26 2018 *)

Formula

O.g.f.: exp( x + 5*x^2/2 + 61*x^3/3 + 1385*x^4/4 + ... ) = 1 + x + 3*x^2 + 23*x^3 + 371*x^4 + ....
a(0) = 1 and for n >= 1, n*a(n) = Sum_{k = 1..n} (-1)^k*2^(2*k)*E(2*k,1/2)*a(n-k).
a(n) ~ 2^(4*n + 3) * n^(2*n - 1/2) / (Pi^(2*n + 1/2) * exp(2*n)). - Vaclav Kotesovec, Jun 08 2019

A000281 Expansion of cos(x)/cos(2x).

Original entry on oeis.org

1, 3, 57, 2763, 250737, 36581523, 7828053417, 2309644635483, 898621108880097, 445777636063460643, 274613643571568682777, 205676334188681975553003, 184053312545818735778213457, 193944394596325636374396208563
Offset: 0

Views

Author

Keywords

Comments

a(n) is (2n)! times the coefficient of x^(2n) in the Taylor series for cos(x)/cos(2x).

Examples

			cos x / cos 2*x = 1 + 3*x^2/2 + 19*x^4/8 + 307*x^6/80 + ...
		

References

  • J. W. L. Glaisher, "On the coefficients in the expansions of cos x / cos 2x and sin x / cos 2x", Quart. J. Pure and Applied Math., 45 (1914), 187-222.
  • I. J. Schwatt, Intro. to Operations with Series, Chelsea, p. 278.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a := n -> (-1)^n*2^(6*n+1)*(Zeta(0,-2*n,1/8)-Zeta(0,-2*n,5/8)):
    seq(a(n), n=0..13); # Peter Luschny, Mar 11 2015
  • Mathematica
    With[{nn=30},Take[CoefficientList[Series[Cos[x]/Cos[2x],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Oct 06 2011 *)
  • PARI
    {a(n) = if( n<0, 0, n*=2; n! * polcoeff( cos(x + x * O(x^n)) / cos(2*x + x * O(x^n)), n))}; /* Michael Somos, Feb 09 2006 */

Formula

a(n) = Sum_{k=0..n} (-1)^k*binomial(2n, 2k)*A000364(n-k)*4^(n-k). - Philippe Deléham, Jan 26 2004
E.g.f.: Sum_{k>=0} a(k)x^(2k)/(2k)! = cos(x)/cos(2x).
a(n-1) is approximately 2^(4*n-3)*(2*n-1)!*sqrt(2)/((Pi^(2*n-1))*(2*n-1)). The approximation is quite good a(250) is of the order of 10^1181 and this formula is accurate to 238 digits. - Simon Plouffe, Jan 31 2007
G.f.: 1 / (1 - 1*3*x / (1 - 4*4*x / (1 - 5*7*x / (1 - 8*8*x / (1 - 9*11*x / ... ))))). - Michael Somos, May 12 2012
G.f.: 1/E(0) where E(k) = 1 - 3*x - 16*x*k*(2*k+1) - 16*x^2*(k+1)^2*(4*k+1)*(4*k+3)/E(k+1) (continued fraction, 1-step). - Sergei N. Gladkovskii, Sep 17 2012
G.f.: T(0)/(1-3*x), where T(k) = 1 - 16*x^2*(4*k+1)*(4*k+3)*(k+1)^2/( 16*x^2*(4*k+1)*(4*k+3)*(k+1)^2 - (32*x*k^2+16*x*k+3*x-1 )*(32*x*k^2+80*x*k+51*x -1)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 11 2013
From Peter Bala, Mar 09 2015: (Start)
a(n) = (-1)^n*4^(2*n)*E(2*n,1/4), where E(n,x) denotes the n-th Euler polynomial.
O.g.f.: Sum_{n >= 0} 1/2^n * Sum_{k = 0..n} (-1)^k*binomial(n,k)/(1 + x*(4*k + 1)^2) = 1 + 3*x + 57*x^2 + 2763*x^3 + ....
We appear to have the asymptotic expansion Pi/(2*sqrt(2)) - Sum {k = 0..n - 1} (-1)^floor(k/2)/(2*k + 1) ~ 1/(2*n) - 3/(2*n)^3 + 57/(2*n)^5 - 2763/(2*n)^7 + .... See A093954.
Bisection of A001586. See also A188458 and A212435. Second row of A235605 (read as a square array).
The expansion of exp( Sum_{n >= 1} a(n)*x^n/n ) appears to have integer coefficients. See A255883. (End)
From Peter Luschny, Mar 11 2015: (Start)
a(n) = ((-64)^n/((n+1/2)))*(B(2*n+1,7/8)-B(2*n+1,3/8)), B(n,x) Bernoulli polynomials.
a(n) = 2*(-16)^n*LerchPhi(-1, -2*n, 1/4).
a(n) = (-1)^n*Sum_{0..2*n} 2^k*C(2*n,k)*E(k), E(n) the Euler secant numbers A122045.
a(n) = (-4)^n*SKP(2*n,1/2) where SKP are the Swiss-Knife polynomials A153641.
a(n) = (-1)^n*2^(6*n+1)*(Zeta(-2*n,1/8) - Zeta(-2*n,5/8)), where Zeta(a,z) is the generalized Riemann zeta function. (End)
From Peter Bala, May 13 2017: (Start)
G.f.: 1/(1 + x - 4*x/(1 - 12*x/(1 + x - 40*x/(1 - 56*x/(1 + x - ... - 4*n(4*n - 3)*x/(1 - 4*n(4*n - 1)*x/(1 + x - ...
G.f.: 1/(1 + 9*x - 12*x/(1 - 4*x/(1 + 9*x - 56*x/(1 - 40*x/(1 + 9*x - ... - 4*n(4*n - 1)*x/(1 - 4*n(4*n - 3)*x/(1 + 9*x - .... (End)
From Peter Bala, Nov 08 2019: (Start)
a(n) = sqrt(2)*4^n*Integral_{x = 0..inf} x^(2*n)*cosh(Pi*x/2)/cosh(Pi*x) dx. Cf. A002437.
The L-series 1 + 1/3^(2*n+1) - 1/5^(2*n+1) - 1/7^(2*n+1) + + - - ... = sqrt(2)*(Pi/4)^(2*n+1)*a(n)/(2*n)! (see Shanks), which gives a(n) ~ (1/sqrt(2))*(2*n)!*(4/Pi)^(2*n+1). (End)

A212435 Expansion of e.g.f.: exp(-x) / cosh(2*x).

Original entry on oeis.org

1, -1, -3, 11, 57, -361, -2763, 24611, 250737, -2873041, -36581523, 512343611, 7828053417, -129570724921, -2309644635483, 44110959165011, 898621108880097, -19450718635716001, -445777636063460643, 10784052561125704811, 274613643571568682777
Offset: 0

Views

Author

Michael Somos, Jun 21 2012

Keywords

Examples

			G.f. = 1 - x - 3*x^2 + 11*x^3 + 57*x^4 - 361*x^5 - 2763*x^6 + 24611*x^7 + ...
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(-x)/Cosh(2*x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 10 2018
  • Mathematica
    CoefficientList[Series[2*E^x/(E^(4*x)+1), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 25 2014 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ -x] / Cosh[ 2 x], {x, 0, n}]]; (* Michael Somos, Aug 26 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); n! * polcoeff( exp(-x + A) / cosh( 2*x + A), n))};
    
  • Sage
    @CachedFunction
    def p(n,x) :
        if n == 0 : return 1
        w = -1 if n%2 == 0 else  0
        v =  1 if n%2 == 0 else -1
        return v*add(p(k,0)*binomial(n,k)*(x^(n-k)+w) for k in range(n)[::2])
    def A212435(n) : return 2^n*p(n, 1/2)
    [A212435(n) for n in (0..20)]  # Peter Luschny, Jul 19 2012
    

Formula

E.g.f.: 2 * exp(x) / (exp(4*x) + 1).
E.g.f. is the reciprocal of the e.g.f. of A046717.
a(n) = (-1)^n * A188458(n) = (-1)^floor((n + 1) / 2) * A001586(n).
E.g.f.: 2/E(0), where E(k) = 1 + (-1)^k/(3^k - 3*9^k*x/(3*3^k*x + (-1)^k*(k+1)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Oct 17 2013
G.f.: conjecture T(0)/(1+x), where T(k) = 1 - 4*x^2*(k+1)^2/(4*x^2*(k+1)^2 + (1+ x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 12 2013
a(n) ~ n! * (cos(Pi*n/2)-sin(Pi*n/2)) * 2^(2*n+3/2) / Pi^(n+1). - Vaclav Kotesovec, Feb 25 2014
From Peter Bala, Mar 10 2015: (Start)
a(n) = 4^n*E(n,1/4).
O.g.f.: Sum_{n >= 0} 1/2^n * Sum_{k = 0..n} (-1)^k*binomial(n,k)/(1 - x*(4*k + 1)).
The series expansion exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 - x - x^2 + 5*x^3 + 11*x^4 - 91*x^5 - 391*x^6 + ... appears to have integer coefficients. Cf. A188514, A255883. (End)

A255882 Expansion of exp( Sum_{n >= 1} A210657(n)*(-x)^n/n ).

Original entry on oeis.org

1, 2, 13, 224, 8170, 522716, 51749722, 7309866728, 1394040714169, 344865267322010, 107361980072755261, 41067497940750566312, 18931745446455458282248, 10350955324610065848650384, 6622526747212249020075069880, 4901565185965701578921602882976
Offset: 0

Views

Author

Peter Bala, Mar 09 2015

Keywords

Comments

A210657(n) = 3^(2*n)*E(2*n,1/3), where E(n,x) is the n-th Euler polynomial. In general it appears that when is k a nonzero integer, the expansion of exp( Sum_{n >= 1} k^(2*n)*E(2*n,1/k)*(-x)^n/n ) has (positive) integer coefficients. See A255881 (k = 2), A255883(k = 4) and A255884 (k = 6).

Crossrefs

Programs

  • Maple
    #A255882
    k := 3:
    exp(add(k^(2*n)*euler(2*n, 1/k)*(-x)^n/n, n = 1 .. 15)): seq(coeftayl(%, x = 0, n), n = 0 .. 15);
  • Mathematica
    A210657[n_]:= 9^n EulerE[2 n, 1/3]; a:= With[{nmax = 80}, CoefficientList[Series[Exp[Sum[A210657[k]*(-x)^(k)/(k), {k, 1, 75}]], {x, 0, nmax}], x]]; Table[a[[n]], {n, 1, 51}] (* G. C. Greubel, Aug 26 2018 *)

Formula

O.g.f.: exp( 2*x + 22*x^2/2 + 602*x^3/3 + 30742*x^4/4 + ... ) = 1 + 2*x + 13*x^2 + 224*x^3 + 8170*x^4 + ....
a(0) = 1 and for n >= 1, n*a(n) = Sum_{k = 1..n} (-1)^k*3^(2*k)*E(2*k,1/3)*a(n-k).
a(n) ~ 2^(2*n + 2) * 3^(2*n + 1/2) * n^(2*n - 1/2) / (exp(2*n) * Pi^(2*n + 1/2)). - Vaclav Kotesovec, Jun 08 2019

A188514 Expansion of exp( Sum_{n >= 1} A188458(n)*x^n/n ).

Original entry on oeis.org

1, 1, -1, -5, 11, 91, -391, -4115, 27971, 357331, -3353731, -50789375, 607914581, 10692083221, -155442170521, -3120028100285, 53341649623091, 1204301220497011, -23663734574555011, -593828627529030095, 13182525824990398001
Offset: 0

Views

Author

Paul D. Hanna, Apr 02 2011

Keywords

Comments

The e.g.f. of A188458 is exp(x)/cosh(2*x).
The e.g.f. of this sequence is the product of the e.g.f. of A188458 and an even function (see formula section).
From Peter Bala, Mar 10 2015: (Start)
Note exp( Sum_{n >= 1} A212435(n)*x^n/n ) = exp( -x - 3*x^2/2 + 11*x^3/3 + 57*x^4/4 - ... ) = 1 - x - x^2 + 5*x^3 + 11*x^4 - 91*x^5 - 391*x^6 + + - - ... appears to give this sequence but with a different pattern of signs.
More generallly, it appears that when h is an integer and k is a nonzero integer, the expansion of exp( Sum_{n >= 1} (4*k)^n*E(n,h/(4*k))*x^n/n ) has integer coefficients, where E(n,x) denotes the n-th Euler polynomial. (End)

Examples

			O.g.f.: A(x) = 1 + x - x^2 - 5*x^3 + 11*x^4 + 91*x^5 - 391*x^6 +...
Illustration of the properties of the exponential generating function.
E.g.f.: E(x) = 1 + x - x^2/2! - 5*x^3/3! + 11*x^4/4! + 91*x^5/5! - 391*x^6/6! +...
Note that E(x)*cosh(2*x)/exp(x) is an even function:
E(x)*cosh(2*x)/exp(x) = 1 + 2*x^2/2! - 10*x^4/4! + 212*x^6/6! - 10330*x^8/8! + 926972*x^10/10! +...+ A092635(2*n)*x^(2*n)/(2*n)! +...
which equals (G(x)+G(-x))/2 with G(x) being the e.g.f of A092635:
G(x) = 1 - 2*x + 2*x^2/2! + 4*x^3/3! - 10*x^4/4! - 92*x^5/5! + 212*x^6/6! +...
		

Crossrefs

Programs

  • Maple
    exp(add(4^n*euler(n, 3/4)*x^n/n, n = 1 .. 20)): seq(coeftayl(%, x = 0, n), n = 0 .. 20); # Peter Bala, Mar 09 2015
  • Mathematica
    A188458:= With[{nn = 160}, CoefficientList[Series[E^x/Cosh[2*x], {x, 0, nn}], x]*Range[0, nn]!]; a:= With[{nmax = 80}, CoefficientList[ Series[Exp[Sum[A188458[[k + 1]]*x^(k)/(k), {k, 1, 75}]], {x, 0, nmax}], x]]; Table[a[[n]], {n, 1, 51}] (* G. C. Greubel, Aug 26 2018 *)
  • PARI
    {A188458(n)=local(X=x+x*O(x^n));n!*polcoeff(exp(X)/cosh(2*X),n)}
    {a(n)=polcoeff(exp(sum(m=1,n,A188458(m)*x^m/m)+x*O(x^n)),n)}
    
  • PARI
    {A092635(n)=if(n<0, 0, polcoeff(exp(intformal(serlaplace(-1/cosh(x*2+x*O(x^n))^2*2))), n))} /* Michael Somos */
    {a(n)=n!*polcoeff(exp(-x+x*O(x^n))*sum(m=0,n,A092635(m)*(-x)^m/m!),n)}

Formula

G.f.: A(x) = 1/(1-x/(1+2*x/(1 -3*x/(1+3*x/(1+x -5*x/(1+5*x/(1+x -7*x/(1+7*x/(1+x -9*x/(1+9*x/(1+x -11*x/(1+11*x/(1+x -... ))))))))))))) (continued fraction).
Let E(x) be the e.g.f. of this sequence, and let G(x) be the e.g.f of A092635 such that G(x) = G(-x)*exp(-4*x), then E(x) and G(x) are related by:
(1) E(x) = exp(-x) * G(-x),
(2) E(x) = exp(x)/cosh(2*x) * (G(x)+G(-x))/2.

A255884 Expansion of exp( Sum_{n >= 1} A002438(n)*x^n/n ).

Original entry on oeis.org

1, 5, 115, 7955, 1179715, 304888655, 121350927565, 68751844662605, 52528700295424915, 52031089992310711055, 64835758857480094584265, 99249388572274155967996505, 183075972804988649078529524365, 400493686169423616676960341062705, 1025151296160300228944197705742007715
Offset: 0

Views

Author

Peter Bala, Mar 09 2015

Keywords

Comments

A002438(n+1) =(-1)^n*6^(2*n)*E(2*n,1/6), where E(n,x) denotes the n-th Euler polynomial. In general it appears that when k is a nonzero integer, the expansion of exp( Sum_{n >= 1} k^(2*n)*E(2*n,1/k)*(-x)^n/n ) has (positive) integer coefficients. See A255881 (k = 2), A255882(k = 3) and A255883 (k = 4).

Crossrefs

Programs

  • Maple
    #A255884
    k := 6:
    exp(add(k^(2*n)*euler(2*n, 1/k)*(-x)^n/n, n = 1 .. 14)): seq(coeftayl(%, x = 0, n), n = 0 .. 14);
  • Mathematica
    A000243[n_]:= (1 + 9^(n - 1))*Abs[EulerE[2*(n - 1)]]/2; a:= With[{nmax = 75}, CoefficientList[Series[Exp[Sum[A000243[k + 1]*x^(k)/(k), {k, 1, 85}]], {x, 0, nmax}], x]]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Aug 26 2018 *)

Formula

O.g.f.: exp( 5*x + 205*x^2/2 + 22265*x^3/3 + 4544185 *x^4/4 + ... ) = 1 + 5*x + 115*x^2 + 7955*x^3 + 1179715*x^4 + ....
a(0) = 1 and for n >= 1, n*a(n) = Sum_{k = 1..n} (-1)^k*6^(2*k)*E(2*k,1/6)*a(n-k).
a(n) ~ 2^(4*n + 2) * 3^(2*n) * n^(2*n - 1/2) / (exp(2*n) * Pi^(2*n + 1/2)). - Vaclav Kotesovec, Jun 08 2019
Showing 1-6 of 6 results.