cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A255881 Expansion of exp( Sum_{n >= 1} A000364(n)*x^n/n ).

Original entry on oeis.org

1, 1, 3, 23, 371, 10515, 461869, 28969177, 2454072147, 269732425859, 37312477130105, 6342352991066661, 1299300852841580893, 315702973949640373933, 89765549161833322593411, 29526682496433138896248775, 11124674379405792463701519059
Offset: 0

Views

Author

Peter Bala, Mar 09 2015

Keywords

Comments

A000364(n) = (-1)^n*2^(2*n)*Euler(2*n,1/2), where E(n,x) is the n-th Euler polynomial. In general it appears that when k is a nonzero integer, the expansion of exp( Sum_{n >= 1} k^(2*n)*E(2*n,1/k)*(-x)^n/n ) has (positive) integer coefficients. See A255882 (k = 3), A255883(k = 4) and A255884 (k = 6).

Crossrefs

Programs

  • Maple
    #A255881
    k := 2:
    exp(add(k^(2*n)*euler(2*n, 1/k)*(-x)^n/n, n = 1 .. 16)): seq(coeftayl(%, x = 0, n), n = 0 .. 16);
  • Mathematica
    A000364:= Table[Abs[EulerE[2 n]], {n, 0, 80}]; a:= With[{nmax = 70}, CoefficientList[Series[Exp[Sum[A000364[[k + 1]]*x^(k)/(k), {k, 1, 75}]], {x, 0, nmax}], x]]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Aug 26 2018 *)

Formula

O.g.f.: exp( x + 5*x^2/2 + 61*x^3/3 + 1385*x^4/4 + ... ) = 1 + x + 3*x^2 + 23*x^3 + 371*x^4 + ....
a(0) = 1 and for n >= 1, n*a(n) = Sum_{k = 1..n} (-1)^k*2^(2*k)*E(2*k,1/2)*a(n-k).
a(n) ~ 2^(4*n + 3) * n^(2*n - 1/2) / (Pi^(2*n + 1/2) * exp(2*n)). - Vaclav Kotesovec, Jun 08 2019

A210657 a(0)=1; thereafter a(n) = -2*Sum_{k=1..n} binomial(2n,2k)*a(n-k).

Original entry on oeis.org

1, -2, 22, -602, 30742, -2523002, 303692662, -50402079002, 11030684333782, -3077986048956602, 1066578948824962102, -449342758735568563802, 226182806795367665865622, -134065091768709178087428602, 92423044260377387363207812342, -73323347841467639992211297199002
Offset: 0

Views

Author

N. J. A. Sloane, Mar 28 2012

Keywords

Comments

The version without signs has an interpretation as a sum over marked Schröder paths. See the Josuat-Verges and Kim reference.
Consider the sequence defined by a(0)=1; thereafter a(n) = c*Sum_{k=1..n} binomial(2n,2k)*a(n-k). For c = -3, -2, -1, 1, 2, 3, 4 this is A210676, A210657, A028296, A094088, A210672, A210674, A249939.
Apparently a(n) = 2*(-1)^n*A002114(n). - R. J. Mathar, Mar 01 2015

Crossrefs

Programs

  • Maple
    A210657:=proc(n) option remember;
       if n=0 then 1
       else -2*add(binomial(2*n,2*k)*procname(n-k),k=1..floor(n)); fi;
    end;
    [seq(f(n),n=0..20)];
    # Second program:
    a := (n) -> 2*36^n*(Zeta(0,-n*2,1/6)-Zeta(0,-n*2,2/3)):
    seq(a(n), n=0..15); # Peter Luschny, Mar 11 2015
  • Mathematica
    nmax=20; Table[(CoefficientList[Series[1/(2*Cosh[x]-1), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[2*n+1]], {n,0,nmax}] (* Vaclav Kotesovec, Mar 14 2015 *)
    Table[9^n EulerE[2 n, 1/3], {n, 0, 20}] (* Vladimir Reshetnikov, Jun 05 2016 *)
  • PARI
    a(n)=polcoeff(sum(m=0, n, (2*m)!*(-x)^m/prod(k=1, m, 1-k^2*x +x*O(x^n)) ), n)
    for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Sep 17 2012

Formula

O.g.f.: Sum_{n>=0} (2*n)! * (-x)^n / Product_{k=1..n} (1 - k^2*x). - Paul D. Hanna, Sep 17 2012
E.g.f.: 1/(2*cosh(x) - 1) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!. - Paul D. Hanna, Oct 30 2014
E.g.f.: cos(z/2)/cos(3z/2) = Sum_{n>=0} abs(a(n))*x^(2*n)/(2*n)!. - Olivier Gérard, Feb 12 2014
From Peter Bala, Mar 09 2015: (Start)
a(n) = 3^(2*n)*E(2*n,1/3), where E(n,x) is the n-th Euler polynomial.
O.g.f.: Sum_{n >= 0} 1/2^n * Sum_{k = 0..n} (-1)^k*binomial(n,k)/(1 - x*(3*k + 1)^2).
O.g.f. as a continued fraction: 1/(1 + (3^2 - 1^2)*x/(4 + 12^2*x/(4 + (18^2 - 2^2)*x/(4 + 24^2*x/(4 + (30^2 - 2^2)*x/(4 + 36^2*x/(4 + ... ))))))) = 1 - 2*x + 22*x^2 - 602*x^3 + 30742*x^4 - .... See Josuat-Vergès and Kim, p. 23.
The expansion of exp( Sum_{n >= 1} a(n)*x^n/n ) appears to have integer coefficients. See A255882. (End)
a(n) = 2*36^n*(zeta(-n*2,1/6)-zeta(-n*2,2/3)), where zeta(a,z) is the generalized Riemann zeta function. - Peter Luschny, Mar 11 2015
a(n) ~ 2 * (-1)^n * (2*n)! * 3^(2*n+1/2) / Pi^(2*n+1). - Vaclav Kotesovec, Mar 14 2015
a(n) = Sum_{k=0..n} A241171(n, k)*(-2)^k. - Peter Luschny, Sep 03 2022

A000436 Generalized Euler numbers c(3,n).

Original entry on oeis.org

1, 8, 352, 38528, 7869952, 2583554048, 1243925143552, 825787662368768, 722906928498737152, 806875574817679474688, 1118389087843083461066752, 1884680130335630169428983808, 3794717805092151129643367268352
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 8*x + 352*x^2 + 38528*x^3 + 7869952*x^4 + 2583554048*x^5 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 3 of A235605.
Bisections: A156177 and A156178.
Cf. A000191, A007289, overview in A349264.

Programs

  • Maple
    A000436 := proc(nmax) local a,n,an; a := [1] : n := 1 : while nops(a)< nmax do an := 1-sum(binomial(2*n,2*i)*3^(2*n-2*i)*(-1)^i*op(i+1,a),i=0..n-1) : a := [op(a),an*(-1)^n] ; n := n+1 ; od ; RETURN(a) ; end:
    A000436(10) ; # R. J. Mathar, Nov 19 2006
    a := n -> 2*(-144)^n*(Zeta(0,-2*n,1/6)-Zeta(0,-2*n,2/3)):
    seq(a(n), n=0..12); # Peter Luschny, Mar 11 2015
  • Mathematica
    a[0] = 1; a[n_] := a[n] = (-1)^n*(1 - Sum[(-1)^i*Binomial[2n, 2i]*3^(2n - 2i)*a[i], {i, 0, n-1}]); Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Jan 31 2012, after R. J. Mathar *)
    With[{nn=30},Take[CoefficientList[Series[Cos[x]/Cos[3x],{x,0,nn}], x] Range[ 0,nn]!,{1,-1,2}]] (* Harvey P. Dale, May 22 2012 *)
  • PARI
    x='x+O('x^66); v=Vec(serlaplace( cos(x) / cos(3*x) ) ); vector(#v\2,n,v[2*n-1]) \\ Joerg Arndt, Apr 27 2013
  • Sage
    from mpmath import mp, lerchphi
    mp.dps = 32; mp.pretty = True
    def A000436(n): return abs(3^(2*n)*2^(2*n+1)*lerchphi(-1,-2*n,1/3))
    [A000436(n) for n in (0..12)]  # Peter Luschny, Apr 27 2013
    

Formula

E.g.f.: cos(x) / cos(3*x) (even powers only).
For n>0, a(n) = A002114(n)*2^(2n+1) = (1/3)*A002112(n)*2^(2n+1). - Philippe Deléham, Jan 17 2004
a(n) = Sum_{k=0..n} (-1)^k*9^(n-k)*A086646(n,k). - Philippe Deléham, Oct 27 2006
(-1)^n a(n) = 1 - Sum_{i=0..n-1} (-1)^i*binomial(2n,2i)*3^(2n-2i)*a(i). - R. J. Mathar, Nov 19 2006
a(n) = P_{2n}(sqrt(3))/sqrt(3) (where the polynomials P_n() are defined in A155100). - N. J. A. Sloane, Nov 05 2009
E.g.f.: E(x) = cos(x)/cos(3*x) = 1 + 4*x^2/(G(0)-2*x^2); G(k) = (2*k+1)*(k+1) - 2*x^2 + 2*x^2*(2*k+1)*(k+1)/G(k+1); (continued fraction, Euler's kind, 1-step). - Sergei N. Gladkovskii, Jan 02 2012
G.f.: 1 / (1 - 2*4*x / (1 - 6*6*x / (1 - 8*10*x / (1 - 12*12*x / (1 - 14*16*x / (1 - 18*18*x / ...)))))). - Michael Somos, May 12 2012
a(n) = | 3^(2*n)*2^(2*n+1)*lerchphi(-1,-2*n,1/3) |. - Peter Luschny, Apr 27 2013
a(n) = (-1)^n*6^(2*n)*E(2*n,1/3), where E(n,x) denotes the n-th Euler polynomial. Calculation suggests that the expansion exp( Sum_{n >= 1} a(n)*x^n/n ) = exp( 8*x + 352*x^2/2 + 38528*x^3/3 + ... ) = 1 + 8*x + 208*x^2 + 14336*x^3 + ... has integer coefficients. Cf. A255882. - Peter Bala, Mar 10 2015
a(n) = 2*(-144)^n*(zeta(-2*n,1/6)-zeta(-2*n,2/3)), where zeta(a,z) is the generalized Riemann zeta function. - Peter Luschny, Mar 11 2015
From Vaclav Kotesovec, May 05 2020: (Start)
For n>0, a(n) = (2*n)! * (zeta(2*n+1, 1/6) - zeta(2*n+1, 5/6)) / (sqrt(3)*Pi^(2*n+1)).
For n>0, a(n) = (-1)^(n+1) * 2^(2*n-1) * Bernoulli(2*n) * (zeta(2*n+1, 1/6) - zeta(2*n+1, 5/6)) / (Pi*sqrt(3)*zeta(2*n)). (End)
Conjecture: for each positive integer k, the sequence defined by a(n) (mod k) is eventually periodic with period dividing phi(k). For example, modulo 13 the sequence becomes [1, 8, 1, 9, 12, 10, 0, 8, 1, 9, 12, 10, 0, ...]; after the initial term 1 this appears to be a periodic sequence of period 6, a divisor of phi(13) = 12. - Peter Bala, Dec 11 2021

A255883 Expansion of exp( Sum_{n >= 1} A000281(n)*x^n/n ).

Original entry on oeis.org

1, 3, 33, 1011, 65985, 7536099, 1329205857, 334169853267, 113370124235649, 49880529542872515, 27614111852126579361, 18782012442066306225843, 15394836674855296870428993, 14965462261283347594195897251, 17023467576167762236198869304545, 22400927665017118737825435362462739
Offset: 0

Views

Author

Peter Bala, Mar 09 2015

Keywords

Comments

A000281(n) =(-1)^n*4^(2*n)*E(2*n,1/4), where E(n,x) denotes the n-th Euler polynomial. In general it appears that when k is a nonzero integer, the expansion of exp( Sum_{n >= 1} k^(2*n)*E(2*n,1/k)*(-x)^n/n ) has (positive) integer coefficients. See A255881 (k = 2), A255882(k = 3) and A255884 (k = 6).

Crossrefs

Programs

  • Maple
    #A255883
    k := 4:
    exp(add(k^(2*n)*euler(2*n, 1/k)*(-x)^n/n, n = 1 .. 15)): seq(coeftayl(%, x = 0, n), n = 0 .. 15);
  • Mathematica
    A000281:= With[{nn = 200}, Take[CoefficientList[Series[Cos[x]/Cos[2 x], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]]; a:= With[{nmax = 80}, CoefficientList[Series[Exp[Sum[A000281[[k + 1]]*x^(k)/(k), {k, 1, 85}]], {x, 0, nmax}], x]]; Table[a[[n]], {n, 1, 50}]  (* G. C. Greubel, Aug 26 2018 *)

Formula

O.g.f.: exp( 3*x + 57*x^2/2 + 2763*x^3/3 + 250737*x^4/4 + ... ) = 1 + 3*x + 33*x^2 + 1011*x^3 + 65985*x^4 + ....
a(0) = 1 and for n >= 1, n*a(n) = Sum_{k = 1..n} (-1)^k*4^(2*k)*E(2*k,1/4)*a(n-k).
a(n) ~ 2^(6*n + 5/2) * n^(2*n - 1/2) / (exp(2*n) * Pi^(2*n + 1/2)). - Vaclav Kotesovec, Jun 08 2019

A255884 Expansion of exp( Sum_{n >= 1} A002438(n)*x^n/n ).

Original entry on oeis.org

1, 5, 115, 7955, 1179715, 304888655, 121350927565, 68751844662605, 52528700295424915, 52031089992310711055, 64835758857480094584265, 99249388572274155967996505, 183075972804988649078529524365, 400493686169423616676960341062705, 1025151296160300228944197705742007715
Offset: 0

Views

Author

Peter Bala, Mar 09 2015

Keywords

Comments

A002438(n+1) =(-1)^n*6^(2*n)*E(2*n,1/6), where E(n,x) denotes the n-th Euler polynomial. In general it appears that when k is a nonzero integer, the expansion of exp( Sum_{n >= 1} k^(2*n)*E(2*n,1/k)*(-x)^n/n ) has (positive) integer coefficients. See A255881 (k = 2), A255882(k = 3) and A255883 (k = 4).

Crossrefs

Programs

  • Maple
    #A255884
    k := 6:
    exp(add(k^(2*n)*euler(2*n, 1/k)*(-x)^n/n, n = 1 .. 14)): seq(coeftayl(%, x = 0, n), n = 0 .. 14);
  • Mathematica
    A000243[n_]:= (1 + 9^(n - 1))*Abs[EulerE[2*(n - 1)]]/2; a:= With[{nmax = 75}, CoefficientList[Series[Exp[Sum[A000243[k + 1]*x^(k)/(k), {k, 1, 85}]], {x, 0, nmax}], x]]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Aug 26 2018 *)

Formula

O.g.f.: exp( 5*x + 205*x^2/2 + 22265*x^3/3 + 4544185 *x^4/4 + ... ) = 1 + 5*x + 115*x^2 + 7955*x^3 + 1179715*x^4 + ....
a(0) = 1 and for n >= 1, n*a(n) = Sum_{k = 1..n} (-1)^k*6^(2*k)*E(2*k,1/6)*a(n-k).
a(n) ~ 2^(4*n + 2) * 3^(2*n) * n^(2*n - 1/2) / (exp(2*n) * Pi^(2*n + 1/2)). - Vaclav Kotesovec, Jun 08 2019

A255926 Expansion of exp( Sum_{n >= 1} A210676(n)*x^n/n ).

Original entry on oeis.org

1, -3, 30, -802, 45414, -4508190, 692197470, -151610017950, 44827810930305, -17193060505570335, 8298004578522898140, -4920774627129981351120, 3516683319021255757053900, -2980761698101283167670391780, 2956463734237276273792194346560, -3392220222832838757465019626175680
Offset: 0

Views

Author

Peter Bala, Mar 11 2015

Keywords

Comments

It appears that this sequence is integer valued.
The o.g.f. A(x) = 1 - 3*x + 30*x^2 - 802*x^3 + ... for this sequence is such that 1 + x*d/dx( log(A(x)) ) is the o.g.f. for A210676.
This sequence is the particular case m = -3 of the following general conjecture.
Let m be an integer and consider the sequence u(n) defined by the recurrence u(n) = m*Sum_{k = 0..n-1} binomial(2*n,2*k)*u(k) with the initial condition u(0) = 1. Then the expansion of exp( Sum_{n >= 1} u(n)*x^n/n ) has integer coefficients.
For cases see A255882(m = -2), A255881(m = -1), A255928(m = 1), A255929(m = 2) and A255930(m = 3).
Note that u(n), as a polynomial in the variable m, is the n-th row polynomial of A241171.

Crossrefs

Cf. A210676, A241171, A255882(m = -2), A255881(m = -1), A255928(m = 1), A255929(m = 2), A255930(m = 3).

Programs

  • Maple
    A210676 := proc (n) option remember; if n = 0 then 1 else -3*add(binomial(2*n, 2*k)*A210676(k), k = 0 .. n-1) end if; end proc:
    A255926 := proc (n) option remember; if n = 0 then 1 else add(A210676(n-k)*A255926(k), k = 0 .. n-1)/n end if; end proc:
    seq(A255926(n), n = 0 .. 16);

Formula

O.g.f.: exp(-3*x + 51*x^2/2 - 2163*x^3/3 + 171231*x^4/4 + ...) = 1 - 3*x + 30*x^2 - 802*x^3 + 45414*x^4 - ....
a(0) = 1 and a(n) = (1/n)*Sum_{k = 0..n-1} A210676(n-k)*a(k) for n >= 1.

A255928 Expansion of exp( Sum_{n >= 1} A094088(n)*x^n/n ).

Original entry on oeis.org

1, 1, 4, 44, 1025, 41693, 2617128, 234091692, 28251572652, 4421489003700, 870650503128708, 210629395976568828, 61405707768736724472, 21231253444779700476672, 8589776776743377081599500, 4020181599664131540547091076, 2155088041310451318611119556661
Offset: 0

Views

Author

Peter Bala, Mar 11 2015

Keywords

Comments

It appears that this sequence is integer valued.
The o.g.f. A(x) = 1 + x + 4*x^2 + 44*x^3 + ... for this sequence is such that 1 + x*d/dx( log(A(x)) ) is the o.g.f. for A094088.
This sequence is the particular case m = 1 of the following general conjecture.
Let m be an integer and consider the sequence u(n) defined by the recurrence u(n) = m*Sum_{k = 0..n-1} binomial(2*n,2*k)*u(k) with the initial condition u(0) = 1. Then the expansion of exp( Sum_{n >= 1} u(n)*x^n/n ) has integer coefficients.
For cases see A255926(m = -3), A255882(m = -2), A255881(m = -1), A255929(m = 2) and A255930(m = 3).
Note that u(n), as a polynomial in the variable m, is the n-th row generating polynomial of A241171.

Crossrefs

Cf. A094088, A241171, A255926(m = -3), A255882(m = -2), A255881(m = -1), A255929(m = 2), A255930(m = 3).

Programs

  • Maple
    A094088 := proc (n) option remember; if n = 0 then 1 else add(binomial(2*n, 2*k)*A094088(k), k = 0 .. n-1) end if; end proc:
    A255928 := proc (n) option remember; if n = 0 then 1 else add(A094088(n-k)*A255928(k), k = 0 .. n-1)/n end if; end proc:
    seq(A255928(n), n = 0 .. 16);

Formula

O.g.f.: exp(x + 7*x^2/2 + 121*x^3/3 + 3907*x^4/4 + ...) = 1 + x + 4*x^2 + 44*x^3 + 1025*x^4 + ....
a(0) = 1 and a(n) = (1/n)*Sum_{k = 0..n-1} A094088(n-k)*a(k) for n >= 1.

A255929 Expansion of exp( Sum_{n >= 1} A210672(n)*x^n/n ).

Original entry on oeis.org

1, 2, 15, 308, 13399, 1019106, 119698377, 20039968920, 4527610159068, 1326616296092984, 489092182592254708, 221537815033845709776, 120928125204565597029220, 78286897353506845258973144, 59305342759674536454338570652, 51970719684035315747385128783808
Offset: 0

Views

Author

Peter Bala, Mar 11 2015

Keywords

Comments

It appears that this sequence is integer valued.
The o.g.f. A(x) = 1 + 2*x + 15*x^2 + 308*x^3 + ... for this sequence is such that 1 + x*d/dx( log(A(x)) ) is the o.g.f. for A210672.
This sequence is the particular case m = 2 of the following general conjecture.
Let m be an integer and consider the sequence u(n) defined by the recurrence u(n) = m*Sum_{k = 0..n-1} binomial(2*n,2*k)*u(k) with the initial condition u(0) = 1. Then the expansion of exp( Sum_{n >= 1} u(n)*x^n/n ) has integer coefficients.
For cases see A255926(m = -3), A255882(m = -2), A255881(m = -1), A255928(m = 1) and A255930(m = 3).
Note that u(n), as a polynomial in the variable m, is the n-th row generating polynomial of A241171.

Crossrefs

A210672, A241171, A255926(m = -3), A255882(m = -2), A255881(m = -1), A255928(m = 1), A255930(m = 3).

Programs

  • Maple
    #A255929
    A210672 := proc (n) option remember; if n = 0 then 1 else 2*add(binomial(2*n, 2*k)*A210672(k), k = 0 .. n-1) end if; end proc:
    A255929 := proc (n) option remember; if n = 0 then 1 else add(A210672(n-k)*A255929(k), k = 0 .. n-1)/n end if; end proc:
    seq(A255929(n), n = 0 .. 15);

Formula

O.g.f.: exp(2*x + 26*x^2/2 + 842*x^3/3 + 50906*x^4/4 + ...) = 1 + 2*x + 15*x^2 + 308*x^3 + 13399*x^4 + ....
a(0) = 1 and a(n) = 1/n*Sum_{k = 0..n-1} A210672(n-k)*a(k) for n >= 1.

A255930 Expansion of exp( Sum_{n >= 1} A210674(n)*x^n/n ).

Original entry on oeis.org

1, 3, 33, 991, 63060, 7018860, 1206748720, 295775068680, 97835325011235, 41970842737399345, 22655642596496388759, 15025240474194493147857, 12008582230377080862401692, 11382727559611560650861409564, 12625404970864692720119281536900, 16199644066580777034289339157904220
Offset: 0

Views

Author

Peter Bala, Mar 11 2015

Keywords

Comments

It appears that this sequence is integer valued.
The o.g.f. A(x) = 1 + 3*x + 33*x^2 + 991*x^3 + ... for this sequence is such that 1 + x*d/dx( log(A(x)) ) is the o.g.f. for A210674.
This sequence is the particular case m = 3 of the following general conjecture.
Let m be an integer and consider the sequence u(n) defined by the recurrence u(n) = m*Sum_{k = 0..n-1} binomial(2*n,2*k)*u(k) with the initial condition u(0) = 1. Then the expansion of exp( Sum_{n >= 1} u(n)*x^n/n ) has integer coefficients.
For cases see A255926(m = -3), A255882(m = -2), A255881(m = -1), A255928 (m = 1) and A255929(m = 2).
Note that u(n), as a polynomial in the variable m, is the n-th row generating polynomial of A241171.

Crossrefs

Cf. A210674, A241171, A255926(m = -3), A255882(m = -2), A255881(m = -1), A255928(m = 1), A255929(m = 2).

Programs

  • Maple
    #A255930
    A210674 := proc (n) option remember; if n = 0 then 1 else 3*add(binomial(2*n, 2*k)*A210674(k), k = 0 .. n-1) end if; end proc:
    A255930 := proc (n) option remember; if n = 0 then 1 else add(A210674(n-k)*A255930(k), k = 0 .. n-1)/n end if; end proc:
    seq(A255930(n), n = 0 .. 15);

Formula

O.g.f.: exp(3*x + 57*x^2/2 + 2703*x^3/3 + 239277*x^4/4 + ...) = 1 + 3*x + 33*x^2 + 991*x^3 + 63060*x^4 + ....
a(0) = 1 and a(n) = 1/n*Sum_{k = 0..n-1} A210674(n-k)*a(k) for n >= 1.
Showing 1-9 of 9 results.